Introduction

Notes

Math

Epistemology

Search

Andrius Kulikauskas

  • m a t h 4 w i s d o m - g m a i l
  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

用中文

  • 读物 书 影片 维基百科

Introduction E9F5FC

Questions FFFFC0

Software

Bott Periodicity Models Divisions of Everything


Model various features of divisions

  • Perspective
  • Shift in perspective
  • Three minds +1, +2, +3
  • Three-cycle
  • The two axes of the foursome, fivesome, sixsome, sevensome and the gap between the axes
  • Collapse of the eightsome into the nullsome
  • 24 equations

Make sense of various aspects of Bott periodicity

  • The homotopy groups {$\mathbb{Z}_2$}, {$\mathbb{Z}$}, {$0$}
  • C, P, T symmetries
  • Linear complex structure, quaternionic structure, split-biquaternionic structure
  • Twofold Bott periodicity
  • The splitting of the Lie groups {$Sp(4), Sp(2)\times Sp(2), Sp(2)$}; {$O(2), O(1)\times O(1), O(1)$}; {$U(2),U(1)\times U(1), U(1)$}.

Divisions of everything

  • Morse theory - count the number of directions of steepest ascent - does this relate to the divisions of everything?
  • Eight-cycle of divisions explains how noncontradiction arises from contradiction, thus it is important for life and for consciousness, for preservation and transformation of the whole. How does this relate to decreasing entropy?
  • Can we think of {$S^n$} as relating {$n$} dimensions in a division of everything? With dimension growing per Bott periodicity, as with topological insulators?
  • In Bott periodicity, do the real numbers express God (the nullsome)? and the quaternions express knowledge (the foursome)?
  • In what sense is Bott periodicity the paradigm for recurring activity in Christopher Alexander's patterns? Is it related to God going beyond himself in four steps and human going beyond himself in four steps back to God, on the complementary side of the divisions of everything?

Lie group inverses

  • Interpret the entries of the inverse of a compact symplectic matrix.

Six transformations

  • Compare the related Lie groups (and their connections with spheres) to the six specifications of geometry, the six transformations of perspectives

Adjunctions and Conceptions

  • Consider the role of the loopspace - suspension adjunction.
  • Look for links to Grothendieck's six functor formalism and my classification of adjunctions.

Think of {$O(n)$} as describing experience. Applying a linear complex structure yields {$U(n)$} as unreflected, known, raw experience, separating away the unknown, reflected experience.

The further apply a second linear complex structure yielding {$Sp(n)$} as unreflected unreflected experience, knowledge, throwing away the reflected unreflected experience.

Apply a third linear complex structure yielding {$Sp(n)\times Sp(n)$} as unreflected unreflected unreflected experience, twofold knowledge, which is to say, knowledge in two forms, Unconscious and Conscious, yet unrelated.

These take us from {$O(n)$} to {$U(n)$}, from {$U(n)$} to {$Sp(n)$}, from {$Sp(n)$} to {$Sp(n)\times Sp(n)$}.

  • {$O(n)$} all are known.
  • {$U(n)$} all are known as knowers, beings, witnesses.
  • {$Sp(n)$} all are not known as knowledge. (Witness to a witness.)

Then the split-biquaternionic structure equates isomorphically the two spaces, two kinds of knowledge, one reflecting the other, so there is no more throwing away the reflected. Then they develop separately and finally they are equated, identified as one and the same.

Experience thus includes three levels of reflection which are stripped away. The reflection at each stage takes on different forms as the rotoreflections, the antilinear operator and the break down of the vector space {$V=V_+\oplus V_-$}. But then those two subspaces get equated so there is no more stripping away, we have hit bottom. This yields a three-cycle that returns back to where we started.

This bottoming out of reflection, with the three-cycle, grounds 3 dimensions of space and the fourth dimension of time, which refers back to the first dimension and functions as a clock marking time on the three-cycle. So we experience time as lived internally.`This is given by the fivesome, where the two axes relate whether, what, how, why, one of which is time. The present is the whole of it all.

The gap evolves further with morality where there is a conscience, a concientious perspective upon the present. And this is one of three pairs defining perspectives, which by conscientiousness are equivalent to each other, by a three-cycle. Then further the gap evolves with the supposition of a hypothesis, where there exist known and unknown side-by-side. But this collapses when the hypothesis is affirmed.

The contradiction of the eightsome: all are known and all are not known. Unconscious: {$O(n)$} all are known. Conscious: {$O(n)$} all are not known. The sevensome keeps them separate but the eightsome equates them, gives them opposite meanings. But the sevensome relates exists a known and exists an unknown. How is that interpreted here?

We have {$O, O\times O, O$} where in one direction we have the nullsome, and in the other direction we have the sevensome = {$-1$}.

How do the two rotations (in the Grassmannian) become understood as the same rotation (on the diagonal)?

Beings have linear complex structure, knowledge has quaternionic structure.

{$\textrm{dim}\;\frak{so}$}{$n=\frac{n(n-1)}{2}=1+2+3+\dots +(n-1)$}. Whereas {$\textrm{dim}\;\frak{so}$}{$(n+1)/\frak{so}$}{$(n)=n}. Does the latter encode a division of everything into {$n$} perspectives?

Spin representations distinguish rotation and reflection. Is this consciousness? In particular, {$\frak{so}$}{$(0)$}, {$\frak{so}$}{$(1)$}, {$\frak{so}$}{$(2)$}, {$\frak{so}$}{$(4)$} distinguish rotation and reflection.

How does the orthogonal group arise from the real Grassmannian? This is how {$-1$} yields {$0$}. And what does that say about how the threesome gives rise to the foursome with its gap, as modeled by the symplectic Grassmannian yielding the symplectic group? How does the real Grassmannian fit within the symplectic Grassmannian?

How to analyze the break up of the vector space {$V$} by the larger divisions and how does the development of their gap relate to this break up? And how does that end with {$4+4$}?

This describes the operation +1 as given by the mind and its counterquestions. The operation +2 maps on circles yielding Mobius transformations. So I should study how the six transformations of the boundary yield expectations and two ways of looking at them in terms of Unconscious and Conscious.

{$O(16)$} is Father, {$U(8)$} is Son, {$Sp(4)$} is Spirit.

Every perspective divides up space into raw, immersed, direct, "stepped in" experience and refected, removed, distant, "stepped out" experience. What does it do to the vector space {$V$}?

Does the spectral theorem, the adjoint expression for the orthogonal group {$O(n)$} relate the unconscious and the conscious (the inverse)? Does that express consciousness +3?

Divisions of everything are made up of perspectives which are reflections of raw experience, that which was cast away, thus which fills the gap between {$O(n)$} and the embedded Lie group.

Is the transpose, the inverse modeling reflection?

Compare {$i$} and Hamiltoniain with {$iJ_1$} and complex Bott periodicity. And think about the relation between complex time {$it$} and Boltzmann.

Does odd orthogonal group enter into Bott periodicity or not at all?

Grassmannian chooses vector subspaces, thus models choice. Recall {$F_1$} models God.

The vector space gets repeatedly divided up into two halves, unreflective (eigenvalue 1) and reflective (eigenvalue -1).

The foursome combines a shift in perspective in unreflected {$V_+$} (where the three-cycle turns in one direction) with a shift in perspective in reflected {$V_-$} (where the three-cycle turns in the opposite direction).

A transpose is the reflection of indices {$M_{a,b}\rightarrow M_{b,a}$}. An inverse is the reflection (inversion) of action.

Raw experience as God and human is related by the operation +4, complex Bott periodicity.


I am summarizing my investigation of how Bott periodicity models the divisions of everything.

The most promising approach is to consider the embeddings of Lie groups.

A perspective is modeled by a linear complex structure {$J_k$}. These act on an orthogonal group {$O(16r)$} where {$r$} is an integer. {$J_k^2=-1$}.

Distinct perspectives {$J_j$} and {$J_k$} are mutually anticommuting linear complex structures, which is to say, {$J_jJ_k=-J_kJ_j$}.

Thus a set of {$k$} distinct perspectives is understood as the generators of the Clifford algebra {$Cl_{0,k}$}.

I am trying to identify a set of {$k$} linear complex structures {$J_1, J_2,\dots ,J_k$} with the division of everything into {$k$} perspectives.

As we apply these structures sequentially to {$O(16r)$}, we can ask, which matrices they commute with, and which do they not commute with? In general, it seems that they commute with those which have no reflection, and they do not commute with those which have a reflection. But this notion changes as we keep applying a new, mutually anticommuting structure.

Mental reflection is modeled variously, as inversion, as reflection, as complex conjugation, as antilinearity, as that which is culled away because of noncommutativity.


Three Minds

{$J_\alpha J_\beta$} relates Unconscious and Conscious.

{$J_\alpha J_\gamma J_\delta$} divides the vector space into worlds where {$J_\alpha$} and {$J_\beta$} are experienced as How {$-v\rightarrow v$} and What {$v\rightarrow v$} (as in the How and What of an arrow by the Yoneda embedding). Whereas {$J_\gamma J_\delta$} is their framework which is not experienced but grounds the experience as Why and Whether.

The homotopy groups {$\mathbb{Z}_2$} link the second mind with the first mind, and the third mind with the second mind.

The fourth mind is linked to itself, yielding {$\mathbb{Z}$}. So is the eighth mind.


Consider Clifford algebras {$Cl_{0,k}$} generated by {$J_1,J_2,\dots ,J_k$}.


{$Cl_{0,0}=\mathbb{R}$} Nullsome. {$O(16)$} to {$O(16)$}


{$Cl_{0,1}=\mathbb{C}$} Onesome. {$U(8)$} to {$O(16)$}

Any linear complex structure functions as a perspective.


{$Cl_{0,2}=\mathbb{H}$} Twosome. {$Sp(4)$} to {$O(16)$}

Two mutually anticommuting linear complex structures define a quaternionic structure.

A product of two linear complex structures functions as a shift in perspective.


{$Cl_{0,3}=\mathbb{H}\oplus\mathbb{H}$} Threesome. {$Sp(2)\times Sp(2)$} to {$O(16)$}

Pseudoscalar squares to {$+1$}. {$(J_1J_2J_3)^2=1$}

We have that {$J_1J_2J_3=J_2J_3J_1=J_2J_3J_1$}.

We also have that {$J_1J_2J_3$} splits {$V=V_+\oplus V_-$} where {$J_1J_2J_3v_+ = v_+$} for {$v_+\in V_+$} and {$J_1J_2J_3v_- = -v_-$} for {$v_-\in V_-$}.

{$J_1J_2v_- = J_3v_-,\; J_2J_3v_-=J_1v_-,\; J_3J_1v_-=J_2v_-$}

A product of three linear complex structures breaks up the vector space into two eigenspaces, {$S_+$} and {$S_-$}.

Three mutually anticommuting linear complex structures define a split-biquaternionic structure.


{$Cl_{0,4}=M_2(\mathbb{H})$} Foursome. {$Sp(2)$} to {$O(16)$}

{$J_3J_4$} sets up an isometry between {$V_+$} and {$V_-$}.


{$Cl_{0,5}=M_4(\mathbb{C})$} Fivesome. {$U(2)$} to {$O(16)$}

{$J_1J_4J_5$} commutes with {$J_1J_2J_3$} and acts within {$V_+$} (or {$V_-$}) and divides it into mutually orthogonal eigenspaces {$W_\pm$} with {$W_-=J_2W_+$}. {$J_2$} interchanges the {$1$} and {$j$} so we are left with those matrices that only mix {$1$} and {$i$}, thus are complex.

Can we think of the new operators as developing the gap in between? Or can we think of them as appearing on either end of the chain?


{$Cl_{0,6}=M_8(\mathbb{R})$} Sixsome. {$O(2)$} to {$O(16)$}

{$J_2J_4J_6$} commutes with {$J_1J_2J_3$} and with {$J_1J_4J_5$} and acts within {$W_\pm$} and splits it into {$X_\pm$} such that {$X_-=J_1X_+$}. {$J_1$} acts as {$i$}, thus we are left with those matrices that are without {$i$}.


{$Cl_{0,7}=M_8(\mathbb{R})\oplus M_8(\mathbb{R})$} Sevensome. {$O(1)\times O(1)$} to {$O(16)$}

{$J_1J_6J_7$} commutes with {$J_1J_2J_3$}, {$J_1J_4J_5$}, {$J_2J_4J_6$} and splits {$X_+$} into subspaces {$Y_\pm$}


{$Cl_{0,8}=M_{16}(\mathbb{R})$} Eightsome. {$O(1)$} to {$O(16)$}

{$J_7J_8$} commutes with {$J_1J_2J_3$}, {$J_1J_4J_5$}, {$J_2J_4J_6$} but anticommutes with {$J_1J_6J_7$} and thus sets up an isometry between {$Y_+$} and {$Y_-$}. Are there circumstances where this could be considered contradictory?

Consider flavors of Bott periodicity where this collapses back to the nullsome. In particular, consider Morita equivalence. Yet Morita equivalence equates all matrix algebras of a division algebra, thus equates too many structures.


Modeling physical systems

Modeling biological systems

Krebs cycle.

Bott periodicity. Sulfur as an eight-cycle. The origin of life.

Ideas

  • The relevant Lie groups are all rotations about a fixed origin. That fixed origin represents a universal, absolute perspective, God's perspective upon everything, God's knowledge of everything.
  • Divisions of everything are perhaps chopping up a sphere where the sphere is everything also circle folding
  • Bott periodicity should be related to the collapse of the eightsome into the nullsome, and thus the definition of contradiction
  • Perspective arises because of base point - there is a fixed point for the isometries. We are that fixed point.
  • Understand the dimensions of a Lie group as perspectives. And look at Lie groups as rotations of a sphere.
  • The widgets at the end of the Dynkin chain allow for turning around and thus for ambiguity in the understanding of the perspective of the chain and thus they can be understood as divisions of everything. And this should relate to Bott periodicity.
  • ketverybė: H, nulybė: R
  • 2-periodicity: Dievas - gerumas - Dievas
  • sukeisti buvimą ir nebuvimą, tapimą ir netapimą
  • 10 = 4+6 = 4+(4+2) = 8 + 2 (2 tai laisvumo atvaizdai)
  • Z 0 Z 0 Z 0
  • Z 0 (replace Z 0 with Z2 Z2 particle) Z 0 (replace Z 0 with 0 0 hole)
  • 8 external dimensions (adding 4 dimensions or +2 or +3)
  • internally expressed dimensions - adding integrity
  • same pattern reversed internally
  • Equivalence up to isomorphism is relevant for "user requirements" as opposed to "material implementation". This is relevant for Bott periodicity.

Bott periodicity provides order to the homotopy groups of spheres and that reflects that we are left with Consciousness when we unplug the Unconscious and likewise unplug the Conscious. So the relation between n and m is the relation between the Unconscious and the Conscious and their content.

Bott periodicity expresses the symmetry of mathematics

  • compare this with how Lie algebra root systems express the symmetry in counting forwards and backwards, for example, in one direction {$e_i-e_j$} and in the opposite direction {$e_j-e_i$}.

In Bott Periodicity, the matrix representations are related:

  • {$\mathbb{Z}_2$} as a product (limit) expressing external relationships {$\begin{pmatrix}A & \\ & B \end{pmatrix}$}
  • {$\mathbb{Z}$} as a sum (colimit) {$A+B$} and {$A-B$} in terms of internal structure
  • {$0$} representations are the same size. What is the significance?

Loop spaces

  • Think of loopspace as expressing a space for learning.
  • Loop - open arc - perspective - defines inside vs. outside - the ambiguity of a point.

Complex Bott periodicity, which relates U(n) and U(n+m)/U(n)xU(m), and goes back and forth between them, suggests that real Bott periodicity goes back and forth between O(n) and O(n+m)/O(n)xO(m). In one direction there is one step but in the other direction there are seven steps.

In Bott periodicity, {$\mathbb{Z}_2$} may count the unconscious and the conscious. They are the two pieces of {$O(\infty)$}. The homotopy groups explain the different ways of relating them.

A possible interpretation of the sequence. {$\mathbb{Z}$} expresses a hole as with the threesome and the sevensome. {$\mathbb{Z}_2$} describes the nullsome and the onesome.

  • Three minds are three shifts adding 1, 2, 3 dimensions in the Bott clock shift.
Edit - Upload - History - Print - Recent changes
Search:
This page was last changed on June 18, 2024, at 02:54 PM