概论

数学

发现

Andrius Kulikauskas

  • ms@ms.lt
  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

用中文

  • 读物 书 影片 维基百科

Software

Gyvybė, Life, Biology Fresh Air

生物学

Discovery in Biology


  • Sustatyti biologijos žinojimo rūmus ir jų pagrindu apibrėžti gyvybę.
  • Kuria prasme biologijoje yra įvairūs lygmenys, pavyzdžiui, organizmas, organai, audiniai, ląstelės. Organizmui augant ląstelės neauga didesnės, o daugėja.
  • Collect examples of ways of figuring things out in biology from related episodes of Fresh Air.
  • Relate fixed point, replication, consciousness as all expressions of self-tuning, with different notions of the self.

Sources




Main ideas

Natural and artificial. Biology is the inverse of physics. In physics we isolate and study a subsystem. In biology, we study nature, the living system. We make sure to include the living spirit from the system into our subsystem. We study that living spirit which is present in the natural but not in the artificial. Although ultimately there is no escaping the natural, it is all around us.


Document an environment

Identify an ecosystem

Comprehensively document an environment

  • Bioblitz An intense period of biological surveying in an attempt to record all the living species within a designated area. Groups of scientists, naturalists and volunteers conduct an intensive field study over a continuous time period (e.g., usually 24 hours). There is a public component to many BioBlitzes, with the goal of getting the public interested in biodiversity. To encourage more public participation, these BioBlitzes are often held in urban parks or nature reserves close to cities.

Collecting data about an ecosystem over the long term

  • Schindler's research "demonstrated the cumulative impacts on boreal lake life of global warming, acidification and ozone depletion. Using long-term reference data collected at the ELA, he has shown that climate warming and drought have severe and previously unrecognized effects on the physics, chemistry, and biology of lakes." Experimental Lakes Area
  • Focus on a watershed. Hydrology, including ecosystem water flow, snowfall analysis, and long-term ice-in/ice-out measurements. Hubbard Brook Experimental Forest

Compare similar environments that are at different stages of development

  • Chronosequence A common assumption in establishing chronosequences is that no other variable besides age (such as various abiotic components and biotic components) has changed between sites of interest. Because this assumption cannot always be tested for environmental study sites, the use of chronosequences in field successional studies has recently been debated. Since many processes in forest ecology take a long time (decades or centuries) to develop, chronosequence methods are used to represent and study the time-dependent development of a forest. Field data from a forest chronosequence can be collected in a short period of several months. Chronosequences are often used to study the changes in plant communities during succession. A classic example of using chronosequences to study ecological succession is in the study of plant and microbial succession in recently deglaciated zones. For example, a study from 2005 used the distance from the nose of a glacier as a proxy for site age.

Contrast similar natural environments, determine stages in evolution, characterize robustness

Comparing ecosystems

  • Chronosequence Comparing similar ecological sites that represent different ages in a process of change such as in ecological succession, for example, after fires. As a glacier retreats, the distance from the nose of the glacier can be used as a proxy for age.

Monitoring ecosystems

  • Collecting data over decades allows the understanding of the progression of causes and effects of ecological changes. Data may include soil samples, surveying, photographing landscapes from airplanes, tagging salmon, as in the Arctic.

Create a network of data collection

  • ... promoting the establishment of research networks, working with public agencies to enhance funding sources, and building interactions between scientists and policy makers ... maintaining a comprehensive registry of scientific data sets which may be used in future research projects. Organization of Biological Field Stations

Modify an environment

Note damage to communities

  • Community ecotoxicology studies the effects of all contaminants on patterns and species abundance, diversity, community composition, and species interactions. Ecotoxicology
  • Ecotoxicology strives to assess the impact of chemical, physicochemical and biological agents, not only at the individual level, but also at that of populations and entire ecosystems. In this respect, ecotoxicology again takes into consideration dynamic balance under strain. ... Ecotoxicology is primarily linked to ecology for its goal seeks to circumscribe the influence that stress factors can have on relationships existing between organisms and their habitat. Ecotoxicology

Stressing an ecosystem

  • Stressing with pollution. In 1969, the fertilization experiment began with Lake 227, and in 1973, the double-basin eutrophication experiment on Lake 226 began, in which a section of the Lake 226S was overfertilized with carbon and nitrogen and the other section 226N with carbon and nitrogen as well as phosphorus.[20] The iconic image of the green eutrophied section 226N has been described as the most important in the history of limnology. It convinced the public and policy-makers that phosphorus levels needed to be controlled. "Work at the ELA has produced important evidence on the effects of acid rain and led to the discovery that phosphates from household detergents cause algal blooms. It has elucidated the impacts on fish of mercury and shown how wetland flooding for hydroelectricity leads to increased production of greenhouse gases." Experimental Lakes Area
  • Effects of deforestation on mineral flux. Focus on a watershed. Hubbard Brook Experimental Forest
  • Cycling of Nitrogen, Sulfur, Phosphorus, Mercury, Calcium, and Carbon, and effects of pollution on flux of these and other minerals. Hubbard Brook Experimental Forest

Alter the conditions in an ecosystem

  • A method used by ecologists and plant biologists that raises the concentration of CO2 in a specified area and allows the response of plant growth to be measured. Allows for study of plant competition and study of large trees. Measuring the effect of elevated CO2 using FACE is a more natural way of estimating how plant growth will change in the future as the CO2 concentration rises in the atmosphere. Horizontal or vertical pipes are placed in a circle around the experimental plot, which can be between 1m and 30m in diameter, and these emit CO2 enriched air around the plants. The concentration of CO2 is maintained at the desired level through placing sensors in the plot which feedback to a computer which then adjusts the flow of CO2 from the pipes. FACE circles have been used to measure the response of soybean plants to increased levels of ozone and carbon dioxide. Free-air concentration enrichment

Measure crop yield size and content and compare with lab results.

  • A meta-analysis of 15 years of FACE studies, found the response to elevated CO2 using FACE only slightly increases yield in crop plants (5-7% in rice and 8% in wheat). These responses were lower than was expected from previous studies that measured the effect in labs or enclosures. Free-air concentration enrichment
  • Increased atmospheric carbon dioxide has been found to reduce plant water use, and consequently, the uptake of nitrogen, so particularly benefiting crop yields in arid regions. The carbohydrate content of crops is increased from photosynthesis, but protein content is reduced due to lower nitrogen uptake. Legumes and their symbiotic "nitrogen fixing" bacteria appear to benefit more from increased carbon dioxide levels than most other species. Free-air concentration enrichment

Document organisms

Categorizing distinctions

  • Noting differences in phenotypes, such as the many characteristics of fruit flies.

Transfer biomaterial to a substitute environment.

  • Ex vivo Transfering tissue from a living organism into a comparable, more convenient or more ethical environment. The external environment is set up to minimally alter natural conditions.
  • Biopsy Extraction for inspection of a sample of cells or a tissue from a living organism.

Modify an organism

Breeding

  • Breed back Selective breed domestic animals in an attempt to achieve an animal breed with a phenotype that resembles a wild type ancestor. The extinct wild type ancestors of a given species are known only through skeletons and, in some cases, historical descriptions. In order to test genetic closeness, DNA (both mitochondrial and nuclear) of the breeding animals must be compared against that of the extinct animal. Humans have selected animals only for superficial traits, and as a rule did not intentionally change less-observable traits, such as metabolic biochemistry. Natural selection might serve as an additional tool in creating "authentic" robustness, "authentic" behaviour, and perhaps, the original phenotype as well. In some cases, a sufficient predator population would be necessary to enable such a selection process; in today's Europe, where many breeding-back attempts take place, this predator population is largely absent.

Hurt or kill individuals

  • Linking dose and probability of death. LC50 is the acute toxicity test that tests for the concentrate of tissue at which it is lethal to 50% within the test-specified time. The test may start with eggs, embryos, or juveniles and last from 7 to 200 days. Ecotoxicology
  • Linking dose and probability of damage. EC50 is the concentration that causes adverse effects in 50% of the test organisms (for a binary yes/no effect such as mortality or a specified sublethal effect) or causes a 50% (usually) reduction in a non-binary parameter such as growth. Ecotoxicology
  • Acute and chronic toxicity tests are performed for terrestrial organisms including avian, mammalian, nontarget arthropods, and earthworms. Ecotoxicology
  • Animal testing. Endocrine disruptor In 1998, the EPA announced the Endocrine Disruptor Screening Program by establishment of a framework for priority setting, screening and testing more than 85,000 chemicals in commerce. While the Food Quality Protection Act only required the EPA to screen pesticides for potential to produce effects similar to estrogens in humans, it also gave the EPA the authority to screen other types of chemicals and endocrine effects. Based recommendations from an advisory panel, the agency expanded the screening program to include male hormones, the thyroid system, and effects on fish and other wildlife. The basic concept behind the program is that prioritization will be based on existing information about chemical uses, production volume, structure-activity and toxicity. Screening is done by use of in vitro test systems (by examining, for instance, if an agent interacts with the estrogen receptor or the androgen receptor) and via the use of in animal models, such as development of tadpoles and uterine growth in prepubertal rodents. Full scale testing will examine effects not only in mammals (rats) but also in a number of other species (frogs, fish, birds and invertebrates). Since the theory involves the effects of these substances on a functioning system, animal testing is essential for scientific validity, but has been opposed by animal rights groups. Similarly, proof that these effects occur in humans would require human testing, and such testing also has opposition.
  • Establish correlations. Endocrine disruptor Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, severe attention deficit disorder, cognitive and brain development problems; deformations of the body (including limbs); breast cancer, prostate cancer, thyroid and other cancers; sexual development problems such as feminizing of males or masculinizing effects on females, etc.

Measure and characterize damage to organisms

  • The Organization for Economic Cooperation and Development (OECD) test guideline has developed specific tests to test toxicity level in organisms. Ecotoxicological studies are generally performed in compliance with international guidelines, including EPA, OECD, EPPO, OPPTTS, SETAC, IOBC, and JMAFF. Ecotoxicology

Befriend an organism

How organisms affect environments (analysis)

Introduce natural ingredient that transforms the whole

Transformative ingredient

  • Can one type change into another type? And how?
  • Two ingredients in combination yield a result that neither would by itself.
  • Griffith's experiment Injecting mice with a combination of a nonvirulent strain and the remains of a heat-destroyed virulent strain killed the mice and yielded both the nonvirulent strain and the virulent strain. Thus the dead strain yet had a "transforming principle" that transformed the nonvirulent strain.

Selected introduction of species

  • Australian Dung Beetle Project Dung accumulated upon introduction of cattle. Various species of dung beetles were therefore selected and introduced in Australia, studying their effects on soil quality, fly control, worm control. Also, researchers in South Africa, where there are hundreds of species of dung beetle, worked to identify species that would match 8 selection criteria. Beetle collection surveys were undertaken to understand the environmental conditions preferred by different species. Habitat specificity matching proved important in achieving success.

Reconstructing an environment

  • Pleistocene Park Sergey Zimov and Nikita Zimovn are attempting to re-create the northern subarctic steppe grassland ecosystem that flourished in the area during the last glacial period. They are reintroducing large herbivores and monitoring their effect on local fauna, studying the conversion of ecologically low-grade tundra biome to a productive grassland biome.

Growing a biological responder

  • Avery–MacLeod–McCarty experiment: Background "With the development of serological typing, medical researchers were able to sort bacteria into different strains, or types. When a person or test animal (e.g., a mouse) is inoculated with a particular type, an immune response ensues, generating antibodies that react specifically with antigens on the bacteria. Blood serum containing the antibodies can then be extracted and applied to cultured bacteria. The antibodies will react with other bacteria of the same type as the original inoculation."

Restrict the natural ingredient

Sequence of extractions

  • Avery–MacLeod–McCarty experiment "The purification procedure Avery undertook consisted of first killing the bacteria with heat and extracting the saline-soluble components. Next, the protein was precipitated out using chloroform and the polysaccharide capsules were hydrolyzed with an enzyme. An immunological precipitation caused by type-specific antibodies was used to verify the complete destruction of the capsules. Then, the active portion was precipitated out by alcohol fractionation, resulting in fibrous strands that could be removed with a stirring rod."

Extracting a suspected agent

Destroying candidate agents

Classify agents by responses

Classification by biologically evoked response

  • Avery–MacLeod–McCarty experiment: Background "Pneumococcus is characterized by smooth colonies which have a polysaccharide capsule that induces antibody formation; the different types are classified according to their immunological specificity."

Use causality to verify the presence or absence of a substance

  • Avery–MacLeod–McCarty experiment "An immunological precipitation caused by type-specific antibodies was used to verify the complete destruction of the capsules."
  • Avery–MacLeod–McCarty experiment Is the substance destroyed or not by the testing agents? "To show that it was DNA rather than some small amount of RNA, protein, or some other cell component that was responsible for transformation, Avery and his colleagues used a number of biochemical tests. They found that trypsin, chymotrypsin and ribonuclease (enzymes that break apart proteins or RNA) did not affect it, but an enzyme preparation of "deoxyribonucleodepolymerase" (a crude preparation, obtainable from a number of animal sources, that could break down DNA) destroyed the extract's transforming power."

Analyze the natural ingredient

Identify by consistent proportions of parts

  • Avery–MacLeod–McCarty experiment Chemical analysis showed that the proportions of carbon, hydrogen, nitrogen, and phosphorus in this active portion were consistent with the chemical composition of DNA.

Interrelated species

Interrelated population dynamics

  • Wolves and moose on Isle Royale Moose came to Isle Royale in the early 1900s, later followed by wolves. The populations have been studied since 1958. They are stressed because the moose overbrowse and the wolves are inbred. The populations fluctuate dramatically and have yet to settle down.

How environments affect organisms (algebra)

Study within surroundings

Center: Alter environment to make visible distinctions in organisms

Distinction

  • Quellung reaction (Serological typing) Make distinctions in strains of bacteria visible. Antibodies bind to a bacterial capsule and make it opaque and visible under a microscope.

Algebra of distinctions

  • Counterstain We make every cell distinguishable (with the counterstain) and then distinguish certain cells (which retain the primary stain).
  • Gram stain Classify bacteria into two groups as to whether they have a thick layer of peptidoglycan in the cell wall that retains the primary stain, or whether they have a thinner wall for which the primary stain can be washed out, leaving only the counterstain which stains everything. Note here the use of the washing out.

Tagging animals

  • Tagging of Pacific Predators The tagging of 22 marine species belonging to 2,000 animals. Tags may be surgically implanted and archive various parameters. Tags may be removed later. Or tags may self-release and transmits data to a satellite. Air-breathing marine animals may carry an antenna. Tags can record information on pressure, light, internal and external body temperature, speed of travel. Tags provide information on migration routes and ecosystems.

Bind receptor to tag

  • Enzyme-linked immunosorbent assay (ELISA) Uses a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand (commonly a protein) in a liquid sample using antibodies directed against the protein to be measured. In the most simple form of an ELISA, antigens from the sample to be tested are attached to a surface. Then, a matching antibody is applied over the surface so it can bind the antigen. This antibody is linked to an enzyme and then any unbound antibodies are removed. In the final step, a substance containing the enzyme's substrate is added. If there was binding the subsequent reaction produces a detectable signal, most commonly a color change.

Balance: Noting the natural balance, the base state

  • Functional equilibrium, balanced growth hypothesis, optimal partitioning theory. Analysis of the relative proportion of plant biomass present in the various organs of a plant. Similarly, analysis of the biomass in a plant community. The balance may change depending on environmental conditions, thus reflecting them. See: Biomass allocation
  • C-budget.(Carbon-budget) A way to determine sugar allocation in a plant to its various organs. Measurements are made of uptake of carbon (dioxide) through photosynthesis, and the losses of carbon through roots and shoots by way of respiration. See: Biomass allocation
  • Growth allocation measure the increase in the total biomass of a plant and its various parts. See: Biomass allocation
  • Biomass allocation can involve a measurement of the total allocation of growth over the years, discounting yearly turnover in leaves and fine roots.

How environmental factors affect organisms

Set: Cataloguing the variety of natural solutions along with their norms and variations. (The norms and deviations within the norms and deviations.)

  • Statistical shape analysis An analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes. One of the main methods used is principal component analysis (PCA).
  • Cataloguing a divergence of solutions.

List: Analyzing versions of an organism's structure to note how they are optimized for different natural environments

Observation and proposed explanation of deviations from norms

  • Observation of trade-offs with regard to environments. In the Arctic, trees reduce the risk of freezing by having risk-diffuse wood with narrower pores which, however, are less efficient for transporting water.
  • Observation of adaptations to extreme environments. In the snowy Arctic, large feet in proportion to body weight act like snowshoes; larger size reduces the ratio of surface area to body volume; layers of plumage, fat and fur retain body warmth; digestive adaptations to better digest woody plants with or without the aid of microbial organisms; animals hibernate or migrate.
  • Interspecific allometry Compare related species (for example, insects) to see how total body size is related to the size of various body parts.
  • Evolutionary allometry Over the course of the evolution of a species, consider how total body size is related to the size of various body parts.
  • Ontogenetic allometry In the growth of an organism, consider whether the growth is isometric or allometric, that is, consider whether the size of various body parts changes, proportionately, as total body size increases.
  • Allometry Given a species, consider the distribution of organisms in terms of body size, and see whether the size of various body parts changes.
  • Allometry Given differences in the relationship between total body size and the size of various parts, consider whether, how and why behavior changes.
  • Allometry Note deviations from isometry during growth as evidence of physiological factors forcing allometric growth.
  • Allometry Plot an animal's basal metabolic rate against their body mass, obtain a power-law dependence, Kleiber's law. Thus body mass can explain much of the variation in basal metabolic rate.
  • Phylogenetic comparative methods Infer the evolutionary history of some characteristic (phenotypic or genetic) across a phylogeny.
  • Phylogenetic comparative methods Infer the process of evolutionary branching itself (diversification rates).
  • Confirming the optimum, as with Lack's principle. The clutch size of birds is observed along with the number of birds that are then successfully fed and raised. The average is confirmed to be the optimum, in accordance with the expectations of natural selection. The point here is that the assumption of conservatism and optimality facilitates the analysis and identification of relevant characteristics.

Creating deviations from norms and studying the effects

  • Allometric engineering Alter a body part with respect to the entire body to see its effect on performance. For example: Cropping or extending bird tail lengths to affect success in mating. Removing an ovary in cockroaches to reduce number of progeny, increase resource allocation to each offspring.
  • Determining primary and secondary factors. A comparative study shows that in explaining basal metabolic rates of mammals, body mass is of first importance, taxonomy is of second importance, and environment is of subsequent importance. (See: Allometry)
  • Distinguish features which depend on the size of an animal or not. Muscle tissue is the same across animals but larger animals have a greater number of muscle fibers and lower intrinsic speed.
  • Analysis of diversity among similarity. Analysis of features that affect movement and gaits of different species, making use of the similarities. Application of these models to form realistic hypotheses for extinct species.
  • Assemble patterns of dimensions into behavioral invariants. Allometry Alexander found that animals of different sizes and masses traveling with the same Froude number consistently exhibit similar gait patterns. Dynamically similar gaits are those between which there are constant coefficients that can relate linear dimensions, time intervals, and forces. Animals of different sizes tend to move in dynamically similar fashion whenever the ratio of their speed allows it. Duty factors—percentages of a stride during which a foot maintains contact with the ground—remain relatively constant for different animals moving with the same Froude number. Body mass has even more of an effect than speed on limb dynamics. Leg stiffness, peak force experienced, various other factors are proportional to mass to a power.
  • Model how a common form is diversely applied. Allometry Living organisms of all shapes and sizes utilize spring mechanisms in their locomotive systems, probably in order to minimize the energy cost of locomotion. The allometric study of these systems has fostered a better understanding of why spring mechanisms are so common, how limb compliance varies with body size and speed, and how these mechanisms affect general limb kinematics and dynamics.
  • Scaling with regard to a power of body mass of physiological effects of drugs and other substances. Allometry

Appreciating the factors in an organism's reproductive strategy

Identifying critical points

  • Constructing a theory by interpreting and associating manifest genetically based functionality with the propensity to reproduce the genes.

How artificial changes affect natural environments

Model: Variously modify an environment and compare resulting differences

  • Biological Dynamics of Forest Fragments Project Some rainforests on the outskirts of Manaus, Brazil were inventorized and studied before and after fragmentation. The continuous rainforest was fragmented into 11 regions the size of 1 hectare, 10 hectares and 100 hectares. This was in response to the SLOSS (single large or several small) reserve size debate. Three main questions were: What effect does fragment size have on the rate of species extinction? Would the local extinction rate eventually slow and halt, equalizing the number of species? How do species interactions and demography change as a result of reduced habitat? Edge effects, extinction rates, biotic and abiotic interactions, mortality factors and soil quality were studied over a 25 year period that started before the deforestation. Factors surveyed at edges include temperature, vapor pressure deficit (VPD), and soil moisture. Mark-recapture programs for birds reveal changes in species composition and activity level.
  • Godwin plots Five experimental areas of vegetation were established in the 1927 by Prof. Sir Harry Godwin. The first plot is never cut. The second is cut every four years, the next every three years and so on. ... This management has, over many years, produced different vegetation patterns. Godwin used the experiment to demonstrate that management alone can change plant communities - an idea which is almost universally accepted today, but was quite radical in the early 20th century.

Observe effects of changes in global parameters

  • Observe effects of management of the ecosystem. The early ecosystem monitoring was aimed at studying the effects of forest management practices on water flow and quality. These data have been helpful as baselines for the increasingly sophisticated areas of ongoing research in the forest. Hubbard Brook Experimental Forest
  • The Global Change Experiment studies the response of California annual grassland to global change, including elevated atmospheric CO2, temperature, altered precipitation, and increased nitrogen deposition. Jasper Ridge Biological Preserve

Alter nonliving parameter in living environment

  • Free-air concentration enrichment Releasing CO2 in a natural competitive environment, thus maintaining high levels of CO2, and then measuring percentage increased growth compared to control group.

Isolating from natural environment

Isolate from surroundings

  • In vitro "In glass". Study in glassware.
  • "Examples of in vitro studies include: the isolation, growth and identification of cells derived from multicellular organisms (in cell or tissue culture); subcellular components (e.g. mitochondria or ribosomes); cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts); purified molecules (such as proteins, DNA, or RNA); and the commercial production of antibiotics and other pharmaceutical products."
  • "Viruses, which only replicate in living cells, are studied in the laboratory in cell or tissue culture, and many animal virologists refer to such work as being in vitro to distinguish it from in vivo work in whole animals."
  • "Polymerase chain reaction is a method for selective replication of specific DNA and RNA sequences in the test tube."
  • "Protein purification involves the isolation of a specific protein of interest from a complex mixture of proteins, often obtained from homogenized cells or tissues."
  • "In vitro fertilization is used to allow spermatozoa to fertilize eggs in a culture dish before implanting the resulting embryo or embryos into the uterus of the prospective mother."
  • "In vitro diagnostics refers to a wide range of medical and veterinary laboratory tests that are used to diagnose diseases and monitor the clinical status of patients using samples of blood, cells, or other tissues obtained from a patient."
  • "In vitro testing has been used to characterize specific adsorption, distribution, metabolism, and excretion processes of drugs or general chemicals inside a living organism; for example, Caco-2 cell experiments can be performed to estimate the absorption of compounds through the lining of the gastrointestinal tract; The partitioning of the compounds between organs can be determined to study distribution mechanisms; Suspension or plated cultures of primary hepatocytes or hepatocyte-like cell lines (HepG2, HepaRG) can be used to study and quantify metabolism of chemicals.[6] These ADME process parameters can then be integrated into so called "physiologically based pharmacokinetic models" or PBPK."

Moving from in vivo to in vitro

Extinction and nonextinction in contrived environment

  • Huffaker's mite experiment Contrived world with one species of prey mites and one species of predatory mites. Variation of potential for dispersion in a contrived environment leads to a variation of population dynamics for predator and prey. An optimal environment yields oscillations in populations and a nonoptimal environment yields extinctions.

Maintaining artificial environments

Examining the capabilities for self-sustainability of a closed system or controlled system

  • Controlled (or closed) ecological life-support systems (acronym CELSS) are a self-supporting life support system for space stations and colonies typically through controlled closed ecological systems, such as the BioHome, BIOS-3, Biosphere 2, Mars Desert Research Station, and Yuegong-1. These are life support systems for humans. The system includes air revitilization, food production, waste-water treatemnt.
  • Bioregenerative life support system
  • Yuegong-1 is a Chinese research facility for developing a moonbase that recycled oxygen, water, food, waste, etc. Yellow mealworms were grown for protein but were met with resistance by Western astronauts.
  • Ecosphere Freshwater closed systems are often attempted by nature hobbyists and as experimental projects or demonstrations for biology classes. These require nothing more than a large glass jar with an airtight lid, a few cups of lake or river water, and mud or other substrate from the same body of water. Kept indoors at room temperatures, with exposure to sunlight from a window, such systems have been found to contain living organisms even after several decades. The original level of diversity always falls drastically, sometimes exhibiting interesting patterns of population flux and extinction. Multicellular organisms fare poorly. Eventually an equilibrium of micro-organisms is established.
  • BioHome was used for a variety of experiments. BioHome focused on alternative, non-chemical sewage treatment methods utilizing non-edible plants of aquatic disposition. The aquatic and semi-aquatic plants were chosen based on their previously known abilities for waste treatment. Another usage for the plants used in the wastewater treatment included its implementation as compost, which was feasible as the plants grew as more sewage was introduced. The processed water is subsequently used as toilet and plant water. Plants, or more accurately, the root systems of aquatic plants found to have a filtering effect include bulrush, reed, soft rush and water iris. Water suitable for human use was extracted from the condensate from three sources: dehumidifier units, air conditioning, and plant leaves. In fact, plant leaves proved to be a major, consistently reliable source of water vapors. The condensate was run through ultraviolet equipment to ensure its safety. The plants established and maintained indoor air quality.
  • Life support system The combination of equipment that allows survival in an environment or situation that would not support that life in its absence. It is generally applied to systems supporting human life in situations where the outside environment is hostile, like in space or underwater, or medical situations where the health of the person is compromised to the extent that the risk of death would be high without the function of the equipment.

Simulation of an environment

  • Daisyworld A computer simulation of a hypothetical world which mimics elements of the Earth-Sun system to show the plausibility of the Gaia hypothesis. Daisyworld has two varieties of daisies, one which reflects light and one which absorbs light. The combination maintains an almost constant temperature despite changes in the power of the sun's rays.

Need to sort

Search for determining factors

  • Allometry Factors that affect body mass include the type of physiological design (such as open or closed circulatory system), mechanical design (endoskeleton or exoskeleton), habitat (available land area, water vs. land)

More

  • Hershey-Chase experiment
  • Lipinski's Rule of Five
  • Quantitative structure-activity relationship
  • In situ
  • In utero
  • Bioassay Determine concentration or potency of a substance by its effect on living cells, tissues or living animals. Typical bioassay involves a stimulus (ex. drugs) applied to a subject (ex. animals, tissues, plants) and a response (ex. death) of the subject is triggered and measured. The intensity of stimulus is varied by doses and depending on this intensity of stimulus, a change/response will be followed by a subject.
  • Bioassay Paul Ehrlich introduced the concept of standardization by the reactions of living matter. His use of bioassay was able to discover that administration of gradually increasing dose of diphtheria in animals stimulated production of antiserum.
  • Ligand binding assay An assay, or an analytic procedure, which relies on the binding of ligand molecules to receptors, antibodies or other macromolecules. A detection method is used to determine the presence and extent of the ligand-receptor complexes formed, and this is usually determined electrochemically or through a fluorescence detection method. This type of analytic test can be used to test for the presence of target molecules in a sample that are known to bind to the receptor.
  • Radiobinding assay
  • Radioimmunoassay
  • Enzyme immunoassay

Preventing further cascades - focusing on one step at a time

  • Pharmacologists utilize assays in order to create drugs that are selective, or mimic, the endogenously found cellular components. On the other hand, such techniques are also available to create receptor antagonists in order to prevent further cascades. Ligand binding assay
  • Analytical chemistry
  • Standardized cell lines. Cell culture
  • Immortalised cell line a population of cells from a multicellular organism which would normally not proliferate indefinitely but, due to mutation, have evaded normal cellular senescence and instead can keep undergoing division. The cells can therefore be grown for prolonged periods in vitro. The mutations required for immortality can occur naturally or be intentionally induced for experimental purposes.

Focusing on the general framework for the variety

  • Linus Pauling investigating protein structure. Ignore side chains and just focus on the backbone.

Composing more complex systems

Increasing the complexity of in vitro systems where multiple cells can interact with each other in order recapitulate cell-cell interactions present in tissues (as in "human on chip" systems).[1]

Mathematical extrapolation

  • In vitro to in vivo extrapolation Using mathematical modeling to numerically simulate the behavior of a complex system, whereby in vitro data provides the parameter values for developing a model.

Dissection Dismembering of the body of a deceased animal or plant to study its anatomical structure.

Autopsy Used in pathology and forensic medicine to determine the cause of death in humans.

Vital signs Temperature, pulse, breathing rate, blood pressure.

Befriending life

  • Senelė and Ollie, rubbing his neck and he stretches it out. Empathizing with the animal and loving it, tuning in to its sweet spot. Playing with a puppy, fostering its consciousness. Watching the owl at the John Muir building, turning my head and it turning its, back and forth. Playing with a baby.

Pick a representative system that is easy to work with, like a fruit fly, a mouse.

Three cycle expressing the human observer

  • The phenotype distinctions that humans can observe.
  • A representative system that is easy to work with.
  • A global problem that is relevant to humans on a mass scale, allowing for a mass investment, as with a cash crop, a mono culture.

Consider difference between a phenotypic basis for the science (based on the human observer) and a molecular basis (based on what the system can generate). The post-system molecular basis takes over from the pre-system phenotypic basis.

维基百科: Avida

  • 维基百科: Chris Adami is best known for his work on Avida, an artificial life simulator used to study evolutionary biology, and for applying the theory of information to physical and biological systems.

Ideas

  • Look for a three-cycle expressing bundles of traits: As written information (DNA) taking a stand; as execution of such information, following through; as reflection, reorganization.
  • Think of a replicant as a fixed point.
  • Think of the system as comparing in six ways the probabilities for various aspects of replication (like mutation). This is the basis for evolution.
  • Think of the four levels of what aspect is being reproduced or not (for example, survival and maintenance as self-replication, growth as self-replication).
  • 维基百科: Mereology

https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too

  • Close, careful observation contrasted with experience accumulated through childhood. Examination of seedlings doing poorly, and noticing the lack of fungi.
  • Tracking of isotopes moving back and forth from one tree to another tree.
  • Correlating the movement with the relationship between the trees, that one shades another.
Keisti - Įkelti - Istorija - Spausdinti - Naujausi keitimai -
Search:
Šis puslapis paskutinį kartą keistas May 09, 2021, at 11:25 AM