Chapter 13

Eigenbehavior: Some Algebraic Foundations
of Self-Referential System Processes

13.1 Introduction

This chapter is concerned with representing organizational closuro,:1 in
operational terms. To this end we shall go beyqnd v\fhat was presented in
the last chapter to construct two key notions: }nﬁnlte trees of .operators
and solutions of equations over them. The idea of a solution of an
equation over the class of infinite 'tree.s is an appro.prlz}te waydto‘gwle
more precise meaning to the intuitive 1dga of coordmat‘lons an s1mt}1 -
taneity of interactions. The self-referential and recursive nature of a
network of processes, characteristic of the autonomy of natural systems;
is captured by the invariant behavior proper to the way the gorpponlc;n
processes are interconnected. Thus the complem?ntary descriptions l:z-
havior/recursion (cf. Chapter 10) are represented in a nondugl'form. The
(fixed-point) invariance of a network can be related explicitly to the
underlying recursive dynamics; the component processes are seen as
unfoldment of the unit’s behavior.

13.2 Self-Determined Behavior: Illustrations

1 propose the name eigenbehavior for an expression in the mathematncalr
sense described below that is intended to represent the autonomy
ncrete system. L
So”rll"ltfecr?ame seezlns justified on several counts. First, the preffxx elgen
carries from German the connotation of “proper’_’ and ‘‘self,”” and elge”
behavior is properly or self-determined behavior, ie., autonomy. Seconof
this compound is a generalization consistent with the standard'u;ee .
“‘eigenvalue’” and “‘eigenvector’’ in linear algebra to denote certain f1X

t
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points of linear maps. Thirdly, in at least two fields the term eigenbehav-
ior has been proposed to denote, in particular instances, exactly what
from our point of view is a solution to some system’s closure. N. Jerne
(1974) introduced the idea as a qualitative characterization for the mo-
ment-to-moment stable state of the totality of cellular interactions that
specifies the immune network in living organisms. (We shall elaborate
on this in Chapter 14.) Von Foerster’s (1977) paper is entitled **Objects:
tokens for eigenbehavior,”” and discusses the closure of the sensory-
motor interactions in a nervous system, giving rise to perceptual regu-
larities as objects. Our usage, then, not only is linguistically appropriate,
but also extends previous usage to a more general systemic and mathe-
matical content.

Even in a very general, informal sense, the notion of eigenbehavior is
quite interesting. Let us consider a few illustrations of it before going
into the more detailed treatment.

Eigenbehaviors can be characterized as the fixed points of certain
transformations. Consider an operation «, from a domain A to itself,
a:A — A. A fixed point for « is a value v € A such that a(v) = v. Fixed
points, in general, have several interesting properties. First, in a naive
sense, a fixed point is self-referential or recursive: v says something
about itself, namely, that it is invariant under the operation «. Second,
fixed points are uniquely characterized with respect to all the other values
taken by the operation «. Consider for example the case where a is the
function cos:R — R. Then it is easy to verify that xV = 0.739085 [rad] is
a fixed point, and in fact the only one among the continuum of values
taken by cos. Third, fixed-point values can be expressed through repeated
or indefinite iterations of the operations to which they are related; that
is, they can be ‘‘unfolded’’ in terms of their defining operations. For
example, we may express xV by an indefinite iteration of the operation
cos, i.e., xV = cos(cos(cos(-++))). Note that we may disregard the value
on which the iteration was initiated; it can be any number in the domain
R. Now to some examples.

A rather witty illustration of such eigenbehaviors, due to von Foerster,
can be described in the linguistic domain. Take the following sentence
form: i

S:

*‘This sentence has . . . letters.”’

Let S(n) be the number of letters in § when we insert the verbal name
of the number £ in the empty slot. Thus S$(3) = 27, since, ‘‘three” has
5 letters, which we add to the 22 constant letters of S. By trial and error
we find that $(33) = 33 is the only fixed point. Only for **This sentence
has thirty-three letters’ does the sentence have the mentioned number
of letters.

Even for a fairly simple process, the resulting eigenbehaviors can be
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surprisingly complex. Let me illustrate this fact. Consider an urn con-
taining one white ball and one black ball. Let us perform the following
experiment: draw one ball from the urn, at random, and whatever its
color, replace it and add another ball of the same color to the urn. Repeat
the above procedure many times, so that the number of balls grows very
large. We then ask the question: What will be the percentage of, for
example, black balls in the urn? The answer is surprising: the percentage
can approach any value between 0 and 100, but in each experiment it
will converge to only one stable value (Blackwell and Kendall, 1964). In
other words, after an initial period of fluctuation (initial stages of ap-
proximation) the ratio will settle to a certain value and will stay close to
it (eigenbehavior), although if we repeat the experiment (consider another
organism of the same type) the stable value will be a different one. This
experiment is illustrated in Figure 13-1. It is obvious that the outcome of
the first few draws has a much more significant influence on the final
value of the run than do later draws.

We may now consider a more concrete illustration, in terms of the
ideas already developed in the previous chapter. Consider an electrical
circuit used for computer logic, the flip-flop. One reason to choose this
example is that, being used as a logical block, it can be interpreted as an
indicational form (cf. Appendix B). In fact the standard diagram for the

Figure 13-1
Recursive behavior of the urn example described in the text. Three separate
experiments are plotted, each up to 1000 draws. In all of them an initial stage of
fluctuations is followed by a stable behavior, which differs in each case. It can
be shown that there is equal probability for the behavior converging to any
percentage of black balls.
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flip-flop,
x== [ z
y=:]
can be readily transposed into its corresponding eigenbehavior
z= ﬁx_]v (13'1)
or
¢ =n=mmlal- Fm),
with its tree
z' = _l—] ‘_]
X
I
y
Now, z is the limit of an approximation
z=]z,,
where
Z; = iT)] }Tl—] Y;I s
and, in general,
Zy = ZaoalYall Xal. (13.2)

Clearly

Zn & Znia.
This also specifies as sequences for x and y
X = L;J Xns
y=Ll.
I ;\il) (1)Sf t:flsc ::larll::si lictanse beca‘use., in an ac.tual flip-flop, the expression
, , Interpreted in time as a discrete step-by-step recursive

flunction (13.2), for a given sequence of inputs x;, y;. In fact, we could
ave done that all along in B.., by interpreting z (in time) as a finite




174 Chapter 13: Eigenbehavior

sequence, starting with some z, and under some finite of x;'s apd v,’s,
the following algebraic expression is valid (as can be easily verified by

induction):
2, = Zola(n) B(n),
with

aln) = Y1 5515, 7
B = Fal -yl Fal v 2l Vol 5

This is a recursive expression that algorithmically determinqs z, for every
n, and this is what is normally done in representing these kinds of logical
circuits with feedback. . .

We can see, however, that this approach fits hand in gloYe with our
approximation to an infinite expression (13.1), v_vhich embpdles the self-
referential quality of this reentrant circuit. The e1genb§hav10r represer.lts,
formally and intuitively, the basic structure of the ﬂ¥p—ﬂop as a logical
design, rather than describe it as an ad hoc sequential expression. Tl.1e
time/recursive expression shows how it can actually be operated; its
reentrant forms show what it is and what it means. ‘

What we see emerging from this example is that an eigenbehgvmr traps
the intuitive idea of the global coordination or meaning of a L{mt, through
the way in which it arises in its underlying processes. This has b'een
standard lore in mathematical physics, where invariant tr'fmsformatlons
and fixed-point topological properties of differential dynamics are a royal
road to representations of physical laws. Howeyer, these tools h.ave been
mostly concerned with numerical and differentiable r.eprese.ntatlons, and
there has been little development of the corresponding notions for non-
numerical and informational processes. These only seem necessary when
considering the phenomena proper to complex, natural systems-and en-
gineering design as well. In fact, the initial development of the 1dc;as on
continuous algebras came from the work of Scott (1971), dealing with the
semantics of programming languages. These notions extend rgther nat-
urally to the semantics (i.e., behavior) of recursive processes in natural
systems (Goguen and Varela, 1978b).

13.3 Algebras and Operator Domains

13.3.1
The next few sections are strictly concerned with the mathem.atlcal
grounds necessary to represent self-referential system processes in the’
spirit described above. Thus the reader will be faceq again leth a con-
siderable number of mathematical ideas, most of which are likely to be
unfamiliar. T ask patience for this lengthy development, but I am con
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vinced that this is the sort of precision that lends some of the_intuition
behind this view of system’s autonomy a possibility of being discussed,
tested, and applied.

Four main steps follow. First, we develop some notions that are re-
quired for the representation of infinite trees: namely, operator domain,
finite trees of operators, and their role in the class of algebras of operators
(or X-algebras). Second, we present the extension of 3-algebras to the
infinite case, through order-theoretic notions and approximations. This
yields the class of continuous algebras, and we study the role on infinite
trees among them. Third, we discuss the notion of eigenbehavior as
solutions of equations in continuous algebras, and we construct the set
of rational (infinite) trees, which characterize recursive processes.

Throughout the presentation of these ideas, there are some difficult
turns of which the reader should be forewarned, or else the technical
details may seem unnecessarily complicated. The first subtle point is
that, in discussing algebras of operators, we shall do so by trapping their
“abstract’ quality, that is, the fact that an operator name can designate
many different processes in different situations. This quality of abstract-
ness is expressed here as equivalence “‘up to an isomorphism’’ of differ-
ent algebras. A second possible difficulty arises when variables are in-
troduced into ZX-algebras and trees. The transition from simple
expressions to expressions with variables seems, at first glance, simple
and harmless. Thus it is surprising that when rigor is demanded, delicate
steps are needed to make it come out right. In the case at hand, we end
up constructing two objects [later called Ts(X) and Tyy,] which may
seem mysterious. Third, the illusion that, with these tools, all our prob-
lems are gone is dispelled when we realize that the collection of infinite
trees is rather unknown territory. This leads to a first classification of
trees—those that we shall describe as rational—but this does not exhaust
their complexity.

13.3.2

Previously (Chapter 10) we have used trees and nets to describe the
connection properties of systems. But such a view does not take account
of the operational capabilities of the components that are so intercon-
nected. One step in this direction is to label each mode with a function
that describes the operation of the associated component.

In this respect, it is important to avoid confusion between an operation
and its name; for example, a careful distinction will permit us to use the
same name for several operations, occurring in several situations, but
having a similarity of function that it is desirable to capture. Thus, we
first introduce an abstract symbol system for naming operations. The
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most basic quality an operation can have is the number of arguments it
takes, and we include this quality in the basic notion.

Definition 13.1 An operator domain (or signature) is a family 2 of
disjoint sets, indexed by the natural numbers k € . 2, is the set of
“operator symbols of rank k,”’ and elements of 3, are symbols for
“constants’’ (which take no arguments).

For an ordinary arithmetical operations, the following signature 2
would be appropriate: %, = Z, the positive and negative integers; %; =
{-}, the unary negation operator, as in the expression —(1 + 1); S, =
{+, X}, the usual binary addition and multiplication.

An operator domain gives a basic syntax for operators, but says nothing
about their semantics, that is, their meaning or interpretation. If 2 is an
operator domain, then a Z-algebra is exactly a set of elements together
with a particular function for each symbol in the operator domain; that
is, it gives a concrete interpretation of the abstract operation symbols.
More precisely, an operation symbol o € X, is interpreted as a function
o: A" —> A of n arguments on a set A, and a constant symbol o € 2, is
interpreted as an element of A. This leads to

Definition 13.2 Given an operator domain =, a 2-algebra A is a set A,
called the carrier, plus, for each o € 2, with n > 0, afu.ncti()n a4
A" — A, and for each o € %, an element o 4 of A.

Given an operator domain 3, we can consider expressions compounded
from its symbols, of the general form o(¢,, . . . , t,), with o of rank n,
and each ¢, either a constant symbol, or else itself a compound expres-
sion. More precisely now,

Definition 13.3 Let 3, be an operator domain. Then the set Ts of all (well-
formed) 3-expressions is (recursively) the least set of expressions such
that:

l. 20 g T}_‘,al’ld

2.if o €2, if n>0,and if t; € Tg for i = 1, ..
O'(tl,...,tn)ETz.

., n, then

It is possible, and suggestive, to view these 2-expressions as trees whose f
nodes are labeled with symbols from X. Let X be the operator domain
mentioned above. Then —(+(+(2, 3), X(—1, +(4,0)))) is a S-expression,
which is —((2 + 3) + ((—=1) x (4 + 0))) in the more usual infix notation,
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and can be viewed as the tree

e

N
2 3

|
\X
_/ \+

BEAN

in which the various subexpressions correspond nicely to subtrees.
This suggests the following

Definition 13.4 Let % be an operator domain. Then a 3-tree t is a tree
(|, E, 39, 8y, r) (see Definition 10.1) plus a function t:|t| = 3 such
that if the number of edges out of a € |t|is n, then t(a) € %,.

That is, a node with n child nodes must be labeled with an operator
symbol of rank n, as was the case above.

The reader may now wish to prove that there is in fact a bijective
correspondence between 3-trees and X-expressions. There are quite a
number of equivalent infix notations for binary operators besides those
mentioned in the example; there are also Polish prefix and postfix nota-
tions. For example, the above tree would be given as —++2 X (—=1) +
40 and 23 + (—1) 40 + X +—, respectively, in prefix and postfix notations.
Again, one can establish bijective correspondences among any two of
these notational systems. Moreover, the above mentioned notations far
from exhaust all the possibilities.

Something is going on here: There seems to be an abstract underlying
notion of X-tree or X-expression, which expresses the independence of
the basic concept from any particular choice of how to represent it; and
all representations are in some way isomorphic. This abstract quality of
>-expressions is quite deep, and to make it more precise we begin by
making T into a 3-algebra, by defining operations as follows:

l. foroc € 3,, 07 = oin Ty, and

2. for o € En and t; < T}:, (Ty‘(tl, ..

s tn) = (T(tl’ < e t,,)in T}‘.»

where we have written o, for o,

. Next, we use a fundamental insight from category theory, that it is
important to consider not only the “‘objects,’” but also, and perhaps more
significantly, their relationships with one another, as expressed in the
““structure-preserving” mappings between them. In the case of S-alge-
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bras, ‘‘structure-preserving’’ is given by

Definition 13.5 Given an operator domain = and 2-algebras A, A', a 2-
homomorphism from A to A' is a function h: A — A’ such that

1. if 0 € 3y, then h(o4) = o4, and ,
2. if 0 € 2, then hio(ay, ..., ay)) = ap(h(ay), ..., hlaz)).
A 3-homomorphism 4 is ‘‘structure-preserving’” in the sense that if we
do an operation o in the algebra A, and then apply kA, we get the same
result as if we apply A& to the arguments, and then do o in A’.
We will use 3-homomorphisms to characterize the property of being
‘“abstractly the same as I-expressions,”” by introducing the following

general notion.

Definition 13.6 A 3-homomorphism h is said to be an isomorphism in €
if it has an inverse in €, that is, a 3-homomorphism g such that both
compositions gh and hg are identities. 3-algebras related by 2-iso-
morphism are said to be isomorphic.

For example, it is possible to make the set of all 3-trees (see Definition
13.4) into a S-algebra (call it Ts') in such a way that the bijection between
S-trees and S-expressions is actually a Z-isomorphism between Tx and
T.'. This isomorphism makes precise the sense in which 2-trees and 2-
expressions are ‘‘abstractly the same.”” Furthermore, all the other ab-
stractly equivalent representations also give isomorphic 2-algebras. What
we now want is a more genuinely abstract way to characterize this notion.

The following is the key.

Definition 13.7 A Z-algebra T is initial in a class € if there is a unique
homomorphism, h,:T— A, from T to A, for all A in €.

A remarkable general property of initial algebras is that, if they exist,
they are uniquely defined up to isomorphism by the class € on algebras
within which they are initial. In algebra, the property of being **defined
uniquely up to isomorphism’ is said to embody the idea of abstraction;
that is, initiality defines an algebra ‘‘abstractly’’; this has the practical
meaning of being independent of the manner of representation of ele-
ments, capturing exactly the ‘*abstract algebraic structure’” and nothing
extra. The following result expresses this, and thus shows that initiality
captures the notion of being ‘‘abstractly the same.”

Proposition 13.8 If T, T' are both initial in a class € of 2-algebras, then
T and T' are isomorphic in 6. If T' is isomorphic in € to an initial
algebra T, then T' is also initial in €.
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PROOF: See ADJ (1977, Proposition 1.1). M

What the above does not guarantee us is the existence of initial
E-a.lgebras. Let sf¢gs denote the class of all Z-algebras, together with
their 2-homorphisms. The following result was first proved by Birkhoff
(1938).

Theorem 13.9 Ty is initial in Afys.

PROOF: It will help our understanding of what is going on here to have an
idea of what the unique homomorphism h,: Ty — A looks like. If o €
2, then by the definition of homomorphism, we have to have h (o) =
o 4. Now assume that we have defined 4 for trees of depth <n, and let
t be a tree of depth n. Then ¢ is of the form o (¢,, . . ., t,), with all ¢,
of depth less than n. The definition of ¥-homomorphism then forces that
ha(t) = a4(ha(ty), . . ., hy(t,)), and we are assuming that A ,(z;) are
already well defined. Thus, 4 ,(¢) is well defined, and by induction on #,
h is defined. ]

This function 4 ,:Ts ~ A can be interpreted as assigning to each 3-
tree in Ty its ‘‘natural’’ interpretation in A, that is, the element that the
compound X-expression ¢ in fact denotes in A.

Examples 13.10

1. Let % be the operator domain of the example above. Then Ts
contains trees such as that drawn above. Now let A be Z, with the
operation symbols in I interpreted in their usual way. Then for ¢
the tree above, h4(¢) is the result of actually performing the arith-
metic operations that are only symbolically indicated in ¢; thus £ ,4(¢)
= 1.

2. Let X be the operator domain with 2, = {0}, 2, = {s}, 2, = &,
k> 1, where 0 is “"zero’’ and s is *‘successor.”” Then the 3-algebra
of natural numbers  is initial in &/¢g5. This provides a character-
ization that is different from the usual Peano postulates. MaclLane
and Birkhoff (1967) prove these are equivalent characterizations.

13.4 Variables and Derived Operators

For the developments to follow, we give an algebraic explication, which
can be used in a 3-term, of the concept of a ‘‘variable.”” We are not
assuming that this is an already defined idea. In fact, this is a somewhat
{nysterious idea, and hope that the present discussion may contribute to
its clarification.

Previously, we dealt with single operators of various ranks, acting on
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a S-algebra A. We would like to be able to define compound operators,
such as x + zy(x — y), formed from operators in X and “*variables’’ x,
y, etc. The notion of a “‘freely generated” S-algebra is the key to a
rigorous development of this topic.

Let X = {x;, . . ., x, } be a set of symbols disjoint from 3., and called
“svariables.”” We first form a new signature 2(X) be adjoining the ele-
ments of X as new constants: 3(X), = 2, U X; and 2(X), = 24, k> 0.
Then T s is the initial %(X)-algebra, and it differs from 7 5 in that its
leaf nodes may carry elements of X. Because the operator symbols in
3.(X) include those of 3, we can think of T 3, as a 3.-algebra, simply by
ignoring the X part of the operator domain. More specifically, we define
a new S-algebra, T 5(X), with carrier that of T g, and with operators
those named by % in T 5.

If A is a S-algebra, then each element ¢ of T y has a definite interpre-
tation h,(z) in A. However, elements of T 3, or T 3(X) do not have
definite interpretations in A, because the elements of X do not designate
definite elements of A. However, if we assign values in A to the variable
symbols in X, using a function C: X — A, then we should be able to get
definite values for each element of Tsy,; these values will, of course, in
general depend upon the values assigned to the variables. In this expli-
cation, variables are constants without fixed values, but which can be
assigned any desired value.

The following result shows how terms in Ts(X) get values in a
S-algebra A once the variables in X are given values in A. The advantage
of using Ts(X) rather than Ty, is that Tx(X) is a 2-algebra, so that we
can talk about 2-homomorphisms.

Proposition 13.11 Tx(X) is the free %-algebra generated by X, in the
sense that if C:X — A is any function mapping X into the carrier of
a S-algebra A, then there is a unique %-homomorphism C:Ts(X)—> A
such that following diagram commutes:

X — T+(X)
C ¢

where iy is the inclusion of X into Tx(X).

prROOF: For details see ADJ (1977, Proposition 23). The following de-
scribes just the construction of € from C. Since A is a 3-algebra, we can
make A into a S-algebra, we can make A into a 3(X)-algebra by letting
x name C(x) in A, i.e., x, = C(x). Then there is a unique S (X)-
homomorphism C: T s — A. Since ¢ is a 3(X)-homomorphism, it is_
also a X-homomorphism.
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This result says in effect that an element ¢ of Ty (X) defines a function
Hxy, ..., x,)ona Z-algebra A, since giving x,, . . ., x, values in A
by a function C:X — A also determines a value C(¢) for ¢ in A. Thus,
elements of Ty(X) are themselves operators, derived from the more basic
operators in %, and we shall call them **derived operators,”’ or **X-trees
In n variables.”

Definition 13.12 Let X, = {x;, .. ., x, % let A be a Z-algebra; let
(a,, ..., a,) € A" and define a:X, > A by a(s;) = a;for 1 = i
= n. Then for every t € Ts(X,) we define its corresponding derived
operator on A, t:A" — A, by t lay, . .., a,) = a(t), where a:t(X,)
— A is the unique homorphism extending a:X, — A guaranteed by
Proposition 13.11. )

The following diagram may help visualize these relationships:
X,

tata)

A — A"
e

T}Z(Xn)

Given a §—tree ¢t in n variables, we let a vary in a(t) while keeping ¢
fixed. This amounts to “*evaluating”’ the rank-» term f in A with variables
x; given value a; € A.

13.5 Infinite Trees
13.5.1

In this section we extend the previous ideas on X-algebras and 2-trees
(or X-terms) to the case of infinite trees (or terms). As discussed in
Chapter 10, infinite trees arise as unfoldings of circular situations, and
are the basis of an autonomy/control complementarity.

This extension into infinity required, however, some careful develop-
rqent of additional concepts. These concepts make possible the rigorous
discussion of indefinite recursion. The latter requires appropriate notions
of approximation and limit. The reader will have to bear with me through
some rather technical material before its fruits can be seen. We shall
apply some notions of order and continuity to obtain a characterization
of infinite trees similar to that given for finite trees in the previous
section. This material follows ADJ (1977), but is simpler, less general,
more detailed, and better illustrated (Goguen and Varela, 1978b).

The fundamental concept is that of a partially ordered set or ‘‘poset.”
We define the order-theoretic concepts of greatest importance to us in
this context.
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Definition 13.13 A poset is a set P together with a partial order [_, that
is, a reflexive, antisymmetric, and transitive relation on P.

A poset P is strict iff it has an element 1 € P such that 1 T p for
all p € P; such an element 1 is called minimum or bottom for P.

An upper bound for a subset S of P is any x € P such that a C x
for all a € S. We let (a L b) denote the least upper bound of {a, b},
and let | IS denote the least upper bounds (l.u.b.) of an arbitrary
subset S of P.

A subset S of P is directed iff every finite subset of S has an upper
bound in §.

Let S C P; then S is a chain iff for all a, b €S, either a T bor b
C a. Pis (w-) chain-complete iff every (countable) chain S in P has
a least upper bound in §S.

Note that any two minimum elements of a poset P are in fact equal.

The natural numbers w are a poset with the usual order. Every subset
S C w is directed, since every finite subset of numbers in S has an upper
bound in §, namely the maximum of the set of numbers. Also, every
subset § C o is a chain. But w is not chain-complete. For example, o
itself is a countable chain having no least upper bound in w.

Let A, B be sets, and consider the set [A © B] of all partial functions
from A to B, that is, maps for which not all a’s in A have values in B;
their domains may have ‘‘holes,”” as suggested by the notation ©. Ele-
ments of [A © B] correspond to subsets f of A X B satisfying the
following ‘‘functional” property: If (a, b) € fand (a, b') € f, then
b = b’'. Then [A  B]is a poset with the order relation of set inclusion;
least upper bounds are set unions. The latter will exist in [A © B]iff the
set union is still a functional set; this, of course, is not always the case,
but if { f;): is a chain in [A © B], then Uy, f; exists and is a functional
set. Thus [)i © B]is w-chain-complete.

In line with the category-theoretic doctrine that structure-preserving
maps are at least as important as the corresponding objects, we next
introduce the notion of order-preserving maps for posets.

Definition 13.14 Let P, P' be posets. Then a map f from P to P’ is
monotonic iff for all po  pyin P, f(po) E f(p1)in P'.

If P, P’ are strict posets, then f: P — P'is strict iff f(1) = L.

Let P, P’ be posets, and let {(p;)iq be an w-chain in P. Then f:

P — P'is w-chain-continuous iff

fd?e—llpi)zl'i—(ilf(pi) in P'.

This last definition says that a map is continuous iff the same value
results from taking the least upper bound of a chain and then looking at
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its image, as from mapping each member of the chain and then taking
tl}e least upper bound of the images. This notion of continuity is remi-
niscent of the one found in elementary calculus.

13.5.2

We are interested in putting a partial orders on sets of 3-trees. A clue to
how to do this is provided by our example above: If we can make a set
of Z-trees into a set of partial functions, of the form [A o B], then the
set will have a natural partial order; it also seems reasonable to guess
that B = X will work. But it is not clear what A should be. Here we use
an elegant representation of nodes by strings of natural numbers. The
basic idea is that the string shall encode the sequence of choices of
branches required to get from the root to the node in question. Thus, the
‘root is represented by the empty string X. An (n + 1)st child of the root
1s represented by the string consisting of the single integer n + 1; in
particular, the first child is represented by 0, and the second by 1. More
generally, if u is a string of non-negative integers, representing a node,
then the (n + 1)st child of « is represented by the string un, consisting
of u followed by n. The set of all possible node representations is then
the set ™ of all finite strings of non-negative integers; this is the set A
we wanted above.

Before going on to 3-trees and formal definitions, let us see how this

encoding of nodes to strings works on simple examples. Consider the
tree

.b/:f\
/7 N\
¢ f g

l
h

d

in which a, b, ¢, d, e, f, g, h are the names of the nodes. These are
represented by the following strings (in the same order): A, 0, 1, 2, 00,
10, 11, 110. One advantage of this approach is that it extends to infinite
trees without difficulty. For example, the infinite tree structure

has as its set of node representations A, 0, 1, 00, 01, 000, 001, . . . : to
be precise, it is {0"|n € w} U {0°1|n € w}.
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Clearly, not any set of strings can be the set of representations of the
nodes of a tree. Those sets that can be are captured in the following. At
the same time, we show how to handle 3-trees.

Definition 13.15 A full tree domain is a subset D of o* such that, for all
Uu€E w*and n € w, ‘

1. un € Dimplies u € D,
2. un € Dimplies ui € D for all i € o with i < n.

Let {3 1) new be an operator domain, and let % denote the set U, 2.
Then a full 3-tree is a partial function t:@* © X such that the domain
of definition of t is a tree domain D such that

3. if u € Dbut ui € D forall i € w, then t(u) € 20,
4. if ui € Dand i € o, then t(u) € %, for some n > i.

We shall say that a tree t is finite iff its domain is finite. Let FFs
denote the set of all finite full 3-trees, and let FTy denote the set of all

full 3-trees, finite or not.

Now the set FFy of all full finite 3-trees can be given operations
op:FFy® — FF; for each ¢ € X, in a way analogous to those given
earlier for Ty, and it can be shown that the resulting X-algebra is an
initial S-algebra. Therefore it is isomorphic to Ty, and we have another
example ofda different representation of the same structure. Notice that
the carrier of FFs is the set of all finite elements of [w* © X] satisfying
conditions 1-4 above. We shall hereafter identify FFy and Ts, both as
3.-algebras and as sets.

There is, however, a problem with our plan to use this approach to get
an order structure on X-trees: the order relation on full 2-trees is not
very interesting. In fact, we have the following

Proposition 13.16 For t, t' € [w* & 3], define t L t' fo mean that, as
sets of ordered pairs (that is, as subsets of w* X %), t is a subset of
t'. Then, if t, t' are full 2-trees and t T t', either t = t'ort =

the empty tree.

PROOF: If ¢ is a full S-tree, D is its domain, and « € D, then t(u) € p
iff u has exactly n children, namely, «0, ul, . . ., u(n — 1).

Let D, D' be the domains of ¢, ¢t' and assume t # &, t £ t', and 1 #
¢t'. Then there is some u € D' — D. Write u = vw, choosing v of
maximum possible length such that v € D (this is possible, because at
worst v = A, and both v and w are uniquely determined by giving the
length of v). By conditions 1 and 2 of Definition 13.15 (and induction),
v € D' and t'(v) € 3, with n > 0. By condition 3 of Definition 13.15
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t(v) € 3,. But .t L ¢"implies #(v) = t'(v). We saw that this is impossible,
so the assumption that ¢ # ¢’ must have been wrong. ]

What we really want are finite approximations to the infinite S-trees.
These are easy to obtain, if we relax the requirement that if ¢(u) € 3
then u has exactly n children, by letting some of the child nodes b;
“‘undefined.”’ The following shows how we do this.

Definition 13.17 A (partial) tree domain is a subset D of »* such that for
all u € w*and n € w,

1. un € Dimplies u € D.

Let (Z,)new be an operator domain. Then a (partial) 3-tree is a partial
function t:* © X such that the domain of definition D of t is a partial
tree domain, and

2.ifui € Dand i € w, then t(u) € %, for some n > i.

(Thus, a partial tree satisfies conditions 1 and 4 of Definition 13.15,
but not necessarily 2 and 3.) If t, t' are partial 3-trees, then t = ¢’
iff t C t' as sets of ordered pairs). Let CTy denote the set of all partial
2-trees (both finite and infinite).

The following table should help in keeping track of the notation for
various kinds of Z-trees:

Partial

Full (or full)
Finite FFy = Ty Fs
Finite or infinite FT; CTs

Note that F; C CTy. Hereafter, we shall feel free to drop the word
“partial”” and refer to elements of CTy and Fy as **3-trees.”” To avoid
confusion, elements of Ty and FTy will be referred to as *‘full 3-trees.”’

We illustrate that the ordering relation [ on CTy is nontrivial. Let ¢
be the following full =-tree:
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where o € 3, and x, € 3,. This tree has as its domain D that given in
the previous example. We now construct a sequence FAJ AL S
of finite partial 3-tree approximations to #: let D™ = {u € D |u has length
<n}, and let 1™ be the restriction of ¢ to D™.

For example, D(O) = @, D(l) = {}\}’ D(Z) = {}\’ 07 1}’ D(3) = {}\9 05 1’

00, 01}; and @, 0, @, +® look like

o T
/ N\ /T
o Xo, /U\xo .

g

s ag,

Clearly t® & t@*D = ¢ for all n € w. Moreover, U, t™ = t.
That this situation generalizes nicely, is shown by the following

Proposition 13.18 CTy is a chain-complete poset.

PROOF: We recall from a previous example that chains of partial functions
have least upper bounds that are partial functions. Now, let {(t;)is bec a
chain of partial functions w* © 3, each satisfying conditions 1 and 2 of
Definition 13.17. Then it is not hard to show that the union U, ¢; also
satisfies 1 and 2, and is therefore in CTy. Therefore, it is the least upper

bound of {#;)r. O
In particular, CTs is w-chain-complete, by restricting to chains ()i

Proposition 13.19 Ler t € CTy, and let D be the domain of t. Let D™
= {u € D|(ength of u) < n}, and let t™ be the restriction of t to D™,
Then (1™, is an w-chain of finite 3-trees with least upper bound t.

13.6 Continuous Algebras

The set CTy of all finite and infinite (partial) 3-trees can be given the
structure of a -algebra, in very much the same way as was done earlier
for the finite full 3-trees. This makes CTy into a kind of ordered algebra
and leads toward the characterization of the algebra of 2-trees as initial
in various classes of ordered algebras.

Definition 13.20 Let 3 be an operator domain. We make CTy into a 3-
algebra as follows, making quite explicit use of the ordered-pair rep-
resentation of partial functions:

1. for o € 3, let ocr = {{N, O}
2. fora €3,,n>0,and t,, ..., t, € CTy,let oer(ty, .
= {()\, (7')} U Ui<n {(iu, 0")'(“, 0-,> S ti+1}9

where we have written ocr rather than ocry.-

9
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‘ Informally, a compound expression o(ty, ..., t,)is obtained by tak-
ing a node labeleq o as root, and attaching the roots of the trees
ty, . . ., t, below it (as children), in order.

N ow, CTE‘ already has a partial ordering. We make use of the algebraic
operations given above to provide a characterization of the order struc-
ture of CTy analogous to that provided by Proposition 13.16 for FTs.

Proposition 13.21 For 1, t' € CTs, tE t'iff t=Crort=1t" = o cr for

o € X or there is some o € 3, with n > 0, and t t
, s 3ty no»
th's ..oty € CTy such that t = oeplty, . . . t,), t' =
! ’ ’ ’
oer(ty’s oo, 6 ) and t, =t for 1 = i< n.
PROOF: See ADJ (1977). M

Not only is CTE' an w-complete poset and a X-algebra, but these struc-
tures are related, in the following particularly felicitious way.

Propos.ltion 13.22 For each o € 3, the operation ocp on CT is w-chain-
confinuous.

PRgOF: Let o € %,. The result is trivial if n = 0, so we may assume n
> 0.

Let (#;);e. be w-chains in CTy for i = 1, . ..,n Lets; =1, t;:

A ; At ’ . jew tijs

these l.u:b.. s exist by Proposition 13.19, and in fact, they are set um'oan.

Now, it is “*well known,”" for the n-fold Cartesian-product poset CTs

X o X CTyordered by (11, ..., ) E 1/, o, 1) iff 1, 1, for
i=1,..., n: that L.u.b.’s can be computed componentwise; that is, for
t; €CTsfori=1, .. .,nand j € w,
l]__a_ul(tlj, coeaty) = a0 L 6y
Jew Jew
(whichis (7., . . ., t,)).
What we want to show is that
U'CT([E)]fu" c. ’I}‘J tnj)=[_.l0'c1‘(fu, ce ety ).
€w Jew

So let us calculate, using Definition 13.20.
aerlty, . . ., ty)
={x 0} U ig; in, oYK, 0’y € L1141}
=10 U U (U i, o) [, 07) € 1101,
=U ({(\ a)}uU iEJn Kiu, o) (u, 0') € 11,1,))

Jew

=Ua'cq'(t1j,...,tnj). D

jew

Definition 13.23 An ordered S-algebra is a 3-algebra whose carrier is a

stri ,
trict poset, and whose operations are monotonic. A homomorphism
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of an ordered 3-algebra is a strict monotonic S-homomorphism. Let
Palgs denote the class of all ordered S-algebras, together with all
strict monotonic homomorphisms among them.

An w-continuous 3-algebra is a 3-algebra whose carrier is a strict
w-complete poset whose operations are w-continuous. A homomorph-
ism of w-continuous 2-algebras is a strict w-continuous 3-homomorph-
ism. Let walgs denote the class of all w-continuous 3-algebras, to-
gether with all strict w-continuous S-homomorphisms among them.

We have shown that CTs is an w-continuous 3.-algebra, and thus, an
ordered 3-algebra. The result we are aiming for is that CTy is initial in
walgs. The proof uses the following two results, the first of which is
certainly of independent interest.

Proposition 13.24 Fy is initial in Palgs.

prOOF: Let 3(1) denote the signature 3, enriched by the new constant
symbol 1. Now, we can make any ordered S-algebra A into a X(1)-
algebra, by letting L in (1) denote L in A, which exists because A is
strict. Also, note that a strict $-homomorphism is the same thing as a
3( L)-homomorphism.

The reader may want to verify the following lemma, upon which this
proof relies: Fx,as a 3( 1)-algebra, is isomorphic to Ts() . Then, for any
ordered S-algebra A, there is a unique 3(1)-homomorphism h,:
Fs — A, and we shall be done if we can show that it is monotone.

Let = ¢'in Fy. Since Fx C CTs, we can apply Proposition 13.22 to
get that either: (1) ¢ = L,or ()1 =1 opforo € 2y, or(3) ¢ =
op(ty, ..., ty) and ¢’ ap(ty, .. ., t,) with ¢; & ¢,/ (for i
I,...,n) and ¢ € 3,, noting that each ¢; and ¢;' must be in Fy, not
just in CTs.

In case (1), h(t) = 1, since h, is strict, so certainly h 4(¢) Coh,(t).

In case (2), obviously h4(f) C h,(t') since h(t) = h,(t').

Case (3) is the interesting one, and the proof proceeds by induction on
the cardinality of the domain of definition of ¢. Cases (1) and (2) above
are in fact the basis of the induction. For the inductive step, we assume
that h ,(t;) = h4(t;"), and calculate

[ —

[form of ¢ from (3)]

ha(t) = haloer(ty, - - s ta )
=g hat), .. o ha(t)) -lhyisa homomorphism
Co(ha(ty)y ooy ha(ty)) [o 4 is monotone
=hopty,. ... 8t [k, is a homomorphism
= h,(t"). [form of ¢’ from (3}

Thus A1) E A ().
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Proposition 13.25 The operations of Fs are w-chain-continuous.

PROOF: The proof of Proposition 13.24 go i
The . es thro
trees with finite domains. ) e when restricted t[ol

Now the main result.
Theorem 13.26 CTy is initial in wafgs.

PROOEF: .The proof is based on the fact that wafgs C Pafyy, so that for
any A in wafygy, there is a unique strict monotor—l—e E-horriomorphism
hyFy— A. The work of the proof is to extend this to an w-continuous
E-hom(.n.norphlsm h4:CTs — A, using the approximation suggested b

Proposition 13.21: For t € CTy, we have ¢ = ||, t™, with each ™ Ey
Fy; we then define (when no confusion will arise, we w’rite LI, for L)

ha(t) = L] b (2,

knowing that this l.u.b. exists because A is w-continuous. It remains to

’( ) w 1 bl ( )1 E

1. Suppose h':CTy — A extends h,:F — A and is w-continuous. Then
R = h (L) = LR (o) = LI ha(e) = (o).

2. We first show that % is monotonic. Let ty & ¢, in CTy. Then t,™

E tl(n) fOF a“ n E w, SO that h (t (m h m y ici y
_= 3

halty) = L"_] hA(to(m)L—;— L] ha(t,™) = h,(t,),

as desired.

Now assume that r = |_|; t;, for (¢,), -chain i
(o show that LT 1y i & ti()tig;:lj?t)a.) chain in CTy. We want
. The key lemma is the following: For each n € w, there is some
J € w such that +™ ¢, To show this, it suffices to show that for
any sets A, B,if t' €[A & B]is finite, and if ¢' T |_|; ¢, for (¢,);, a
chain in [A @ B], then there is some j € w such that I’IE t;. o
; Nog let b € QTE be an upper bound of the chain <}‘z,,(ti));w, i.e.,
a0 = b for all i € w. Then (by the lemma of the above paragraph)
for each n € w, there is some j € w such that h,(t"™) C h,(¢;) =
b. T_herefOfe, Ll ha(t™) = h,(z) € b. It now follows that & (Jt):
LV{/]i hA(ti);hl.e., ;hat h 4 is w-continuous, as desired. !
- We now show that A, is a %- i i
ach € 30 1y Chator 1o T f g e (e

ger(ty, oo, 1)® = gep(e, %0, L, £ &0,
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while +©® = 1. Now let us compute:

;lA((TCT(fu---»tn)) N o
=lhyoerltys o o5 ) [definition of /4]
k -
= [ Jhoer(t,* 0 oo 5570)) {above observat'non]
= CJ oA (5D, L Ry (B,570) [h4is a S-homomorphism]
, - k=1 [0, is w-continuous]
= O'A(lTl ha(t,570), .. ,[;J ha(ty ) 4 3 -
= g 4(ha(ty) ha(ty)) {definition of A 4]
- A A 1/9 = =+ n

(where some subscripts k range over k > 0 rather than k € w). [

) I
This completes our general discussion of infinite trees and initial con-

tinuous algebras.

13.7 Equations and Solutions

We are now ready to give the definitions of solutioqs of an equa;lon
over a continuous algebra. This will enable us to formal‘12e the 1de21 of an
eigenbehavior, discussed at the outset of this chapter in a general way.

Definition 13.27 A system of n equations in CTs is a function E:

i = i ith equation.
CTy(X,). We write x; = E(x;) as the zt‘ ’
X}; any):i\ in wafygs, Eq,t A" —> A"is the derived operator of E over

A Es= (E(x{)as -« > E(xp)a):A"— A"

This definition can be represented in the diagram

N’ E(Xi4 .
A e—— A

CTe(Xn)

so that (E s(a)) = E(x;)a(a) = a(E(xi)).

sin CTs, A in wafys.

iti tem of n equation ‘
Proposition 13.28 Let E be a sys f e e solution =

Then E 4 has a minimum fixed point |E4| € A"
E over A, or the eigenbehavior of E over A.
prooF: Define |E | = [Llkew E4"(1, - - - s 1). Then |E 4| is a fixed point,
since
EA(lEAl) = EA(lk_J E &4, ... in
= EA(U EJf(x (L), - - s[k__l EAk(xn)(—l—))
kew €w '
= (L] E& (x) (L), - - ;[?EUJJ E &4 (x ) (1))

kew

:\EA\~
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Consider now a € A" such that E,(a) = a. Then clearly |E | C
a®. Assume, for induction, that |E,|® C 4®_ Then, since E , is mon-
otonic,

EA(lEA|(k)) — IEA!(IC-H)E EA(a(k)) = q&+D,

Thus, |[E,| & a, and |E | is the minimum fixed point. ]

This proposition shows how to construct a fixed point of E through
the indefinite iteration of the trees forming the system of equations.

Call | E| the solution for the case A = CTy, and write | E|, = h,"(|E|).
We now show that we can either solve an equation and then interpret it,
or first interpret and then solve,

Proposition 13.29 For any system E:X, — CTy(X,) of equations and
any A € wafys, |E|, = |E,|.

PROOF: By induction on £ it is clear that

RMER(L, oo L) =E* (L, ... ,1,).
Then
|Els = ha™(E])
= hAn(LZUJEk(J" D))
= ll‘;;lhA"(Ek(J., D)) (continuity of k)
= l';;}[EAk(hA(-L), cey k(D)
=’HEA"(LA, e da)
=|E,|. (]

We have then that every system of equations has an eigenbehavior over
CTy; conversely, this is a way in which we could hope to characterize
infinite trees of CT. Could we not associate with an infinite tree the
equation(s) for which it is a solution? We would like such equational
elements of CT; to be well behaved, in the sense of being describable
and having adequate composition properties. But there is no assurance
that this is the case: The problem of dealing with equational elements of
CTy is quite complex (ADJ, 1978). We can, however, say something
more precise about a small part of CTy, namely those infinite trees that
are solutions for finite systems of equations, that is, systems E such that
E:X,— Fs(X,). An ordered algebra is said to be equationally complete
if every finite system of equations has a solution over A.

Let Ry denote the set of equational elements of CT that are solutions
for finite systems, i.e., the collection of eigenbehaviors

Rs = {|lEL|E: X, = Fe(X,), n>0,1<i=n}
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The reason for this definition of equational completeness and the use of
the ** R’ in Ry is the following characterization of the trees in Rs, which
we state without proof (see ADJ, 1977, Propositions 5.3, 5.4).

Proposition 13.30 If 1 € Ry, then for each 0 € %,, t o) C w*isa
regular subset of {0, 1, . . ., k}* for some k. -

Thus the elements of Ry can be described and compared by means of
some computable procedures. This is, of course, not the case for all the
other elements in CT;: Some infinite trees might not even be finitely or
even recursively describable, and we have no idea how they behave
under composition, quotient, and so on.

By contrast the elements of Ry are very well behaved: Ry is a subal-
gebra of CTy (ADJ, 1977, Proposition 5.5). (Accordingly Scott calls ele-
ments in Ry ‘‘algebraic,”” and elements in CT; — Ry “‘transcendental.”)
For our present purposes we need only be concerned with the construc-
tion of Ry as an equationally complete subalgebra, since finite systems
of equations are certainly the ones that are needed in most (if not all) the
concrete applications. This is so to the extent that equations embody the
ways in which the system components interconnect. We may assume
this situation to be always captured in a finite description (i.e., in trees

of F).

13.8 Reflexive Domains

Let us pause for a moment to reconsider what these algebraic develop-
ments mean in the broader context of the investigation proposed in these
pages. Paying attention to the autonomy of natural systems led us to the
closure thesis—that is, to consider the complementarity between the
recursive underlying dynamics of a unity, and the way in which such
dynamics generates a coherent pattern, a behavior of a unity affording a
criterion of distinction. In order to carry this characterization one step
further, we decided to make precise what we mean by complementarity,
and by a coherent behavior and its underlying processes. That is the
spirit of the notion of organizational closure, and of complementarity as
adjunction, developed so far. Further precision of these ideas hinges
upon the construction of appropriate calculi, where elements or operands
are on the same descriptive level with operators or processes, and where
the products of processes become effectively interrelated with the pro-
cesses that generate them. ,

Let us formulate these notions more formally thus: Consider a descrip-
tive domain of elements D of some kind (stable levels of reactants,
coherent pattern of behavior, meaning of a conversation, and so on). By
the closure thesis, these belong to an autonomous system if they arise
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out of processes acting on the very same elements, that is, some appro-
priate class of operations or processes, which we may denote [D — D].
We need to keep the distinction between elements (criteria of distinction)
and processes (underlying dynamics), but in such a way that they are
effectively related, that is, in such a way that they are seen as the same,
except for the means we choose to observe them, in a star fashion. One
way of formulating this complementarity is to demand a correspondence

D& D DI, (13.3)

When R is an isomorphism, we call D a reflexive domain. It can be
understood as a descriptive realm which can operate on itself (act on
itself).

Now, functions or operations that can operate on themselves have
been a headache in mathematics for a long time. If we simply ask whether
(13.3) is true, in general, for various kinds of D’s and of functions on the
D’s, the answer is no. Such reflexive domains cannot exist without
inconsistencies. However, the condition (13.3) becomes possible if we
restrict the kinds of domains and their operations (see Appendix B). We
started this characterization on the simplest possible grounds: those of
indicational forms. We succeeded in expressing pattern/dynamics in an
explicit form. In order to carry the overall distinction into diversified
operations, we presented the development of continuous algebras, where
a special kind of descriptive domain (i.e., a continuous algebra) and
special operations in them (i.e., continuous) could yield a correspondence
as well. In fact, under these restrictions, we had

s
CTX ? [CT}; - CTz].

S relates equations to their eigenbehavior (minimum fixed-point solution).
E relates infinite trees to the equations of which they are a solution. In
this case, the correspondence (13.3) is not an isomorphism since E is a
one-to-many map. Thus CTy is close to, but not identical with, a reflexive
domain.

So far, this approach has been used in detail only in the semantics of
programming languages, where it originated, as we have said, with the
work of Scott. The motivation for Scott’s work was to consider the

relation between the meaning of a program (i.e., its criteria of distinction),

and its computational behavior (i.e., its underlying closure). In this sense,
a program is looked at as an autonomous object, as a text. This is, of
course, not to say that the computer itself is looked as an autonomous
object: We are talking about the coherence of recursive programs. These
are not so distant from other texts, proper to natural languages, that arise
as coherent objects (cf. Chapter 16; Becker, 1977; Linde, 1978). In the

present interpretation, Scott’s work, as elaborated by the theory of con-
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tinuous algebras, means that this insight into the coherence of a program-
ming text can be generalized to the coherence of other autonomous units,
providing us with precise formal tools to represent them.

To be sure, these algebraic foundations have limitations, but they still
contain a large class of possible models. For each particular system under
study it is necessary to specify in detail which operator domain is to be
considered, and what is its order structure. Once this is established, all
the results from the theory of continuous algebras become available,
since our treatment was ‘“‘abstract’’ through the notion of initiality. In
other words, this means that we begin to have available a range of
mathematical tools, beyond those of differential dynamics (cf. Section
13.10), within which we can include any process whatsoever that can be
made precise enough to define an operator domain satisfying the appro-
priate restrictions of order and continuity. I hasten to warn the reader
that beyond the cases of text coherence, in programming languages (e.g.,
Stoy, 1977) and planning discourse (Linde and Goguen, 1978), this theory
has not yet been applied in any detail. The ground is entirely open. In
the sections that follow I shall try to give a glimpse of the flavor such
applications can have, without pretending to be exhaustive.

13.9 Indicational Reentry Revisited

We can now deal more adequately with the issue raised in Chapter 12,
in relation to infinite indicational expressions. We gave there an informal
construction the class B, of continuous forms; we shall briefly review it
here, in a more rigorous form. At the same time it will serve as an
exercise for in the applications of continuous algebras just presented.
Let 3 be the following operator domain: Xy = (1, 0); %, = {0, }; 2, =
{o2)}; 2 = &, k > 2. Let B denote the set of forms in the indicational
arithmetic formed by crossing and containment of the primary values
marked (1) and unmarked ( ). Thus B is a collection of trees formed out
of the carrier {71, , cross, containment}. Now make B into a 2-algebra

thus:

1. f0r062016t13=j,03= N
2. foroc € 3,,and t € Ty let

o.(21) = 1] = cross(t);
3. foro, € 2,,and t, t' € Ty let
o,(t, t') = tt' = containment(t, t').
Consider now the initial -algebra Ty . There is a unique homomorph-
ism
ind:Ty —» B
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assigning to each tree in T an interpretation as an indicational form. For
instance,

ind[o3(a{0), oy ()] = 17 1= ind[c,(1, 1)].

. Expressions in the primary indicational algebra are easily obtained by
interpreting derived operators in T5(X,), where X, = {X,, . . ., X, }is
a set of variables. So far we have simply redone the calculus of indication
in the light of Z-algebras.

.The key to extending indicational forms to include reentry is, as we
d1§cussed, to allow forms to attain infinite depth. In the 3-algebra context
this extension to infinite forms is immediate. Make CTy into the initial
algebra of wafy; by labeling its trees in the obvious manner and adding
a 1. Similarly, consider now the set B, of trees of any depth, perhaps
infinite but countable, and add to B. an undefined form i g such that
ind(1) = ig.

Make now B., into an wafgs in the obvious manner. Thus B, has an
w-chain-complete carrier, its operations are w-chain-continuous (since
those of CTs are), and there is a unique homomorphism ind:CTs — B.,
that interprets infinite trees as infinite forms. Now we can apply to B,
all the results that we have for CTy in general, but that are of interest for
reentrant forms in B.. In fact, reentry in an indicational form amounts
to solving an equation of the form

x = ®(x),

where @ is any list ® = (P, .
sions. We immediately get

.., ®,) of (finite) indicational expres-

Theorem 13.31 B., is equationally complete.

Consider now the equational elements in CTy, Ry . These are elements
of the form |E| such that

E:X,> Fs(x;), 1=i=n, E(E)=|E|
But we know that |Ez| = |E|;. For example, let
E(x) = o,(x) =7%], E:X,— Fs(x,).
Then

‘El =l|(‘_j Ulk(J—)’

€W
and we can interpret in B.,:

ind(E|) = |Elp = ind(_] o:*(1)) = el |Es),

§atlsfying x = x|. Quite in general, the infinite solutions in Rs, when
Interpreted, give rise to infinite forms, which are conveniently repre-
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sented by reentry or reinsertion of a form into itself. Thus
x=71=]

is the compact form of the solution | E|.

It is important to note that reentrant forms in ind(Ry) can arise from
more than one equation through mutual interdependence of variables.
One such complex reentrant expression is Spencer-Brown’s ‘‘modulator”

which satisfies the following set of equations (Kauffman, 1977) where a
is a constant value:

Xy = axql,
x2=m,
ngm’ \
x4=m-

The solution to this set of equations is an infinite tree constituted by four
interdependent infinite trees; f represents the limit of the four interde-
pendent variables. Since we may look at this limit as an unfolding tree,
fcan also be interpreted as an oscillation in time given by the sequences
of expressions which the unfoldment determines. In this case, the reader
may want to verify that the period of f will be one-half the period of the
constant «.

As a sobering note, the following is worth noting. It seems natural to
consider equivalence classes in R, introduced by a set of initials such
as occultation and transposition, which would make R into a Brownian
algebra. This question, however, is surprisingly complicated, because we
have little idea about how to work with elements in Ry in general, and
with R in particular. As a result of this lack of knowledge, we cannot
have an idea of, for example, how many arithmetical values are available
in Ry. Is it just four, as in V? [For further discussion on this current
research, the reader should see ADJ (1978) and Courcelle (1978).]

13.10 Double Binds as Eigenbehaviors!
I wish to repeat once more that the main purpose of the detailed discus-

sion of the notion of eigenbehavior over continuous algebras is to give

1 These ideas were developed jointly with J. A. Goguen. A full account will appeat .
elsewhere.
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meat and precision to the invariants that characterize autonomy. These
algebraic ideas can be directly applied only to the extent that we have a
fairly detailed idea of the kinds of operations that are appropriate for
some specific systems. The more difficult it is to find precise operational
descriptions for the processes present in a system recursion, the more
removed that case will be from this particular representation of auton-
omy.

For example, if we are dealing with the recursions of numerical and
logical systems, eigenbehaviors apply directly. In these cases eigenbe-
havior can be interpreted as the meaning or semantics of a process.
Consider for example the following recursive process:

Sf(x) = [if x = 0, then 1, else x- f(x — 1].

This process is a mixture of Boolean and numerical operators, and, up
to the value of x, it defines the factorial function !,. Clearly, however,
the recursion involved in the factorial function (process) need not be
limited to some fixed x, and in fact, it seems that the meaning of this
function should be independent of any specific value of x. In this context,
this can clearly be accomplished by taking a function defined by

Ti(x) = [if x = i, then f(x), else 1],
and thus we have a chain
rcrrt ..

with a fixed point
t=1]Tk0L),

kew
which is the factorial function. Thus ‘‘factoriality’’ appears as the fixed
point of this particular recursion.

To be sure, in the above example we have precise knowledge of the
operations involved (Boolean and numerical). When dealing with natural
systems the autonomous quality (the semantics or invariance) will be, by
necessity, less precise, but also much more rich and interesting. One
illustration of this situation is the possibility of gaining a clearer under-
standing of autonomous units realized in one class of communicational
injunctions, the pathological double binds.

The term **double bind™” was introduced in the behavioral sciences by
Bateson (1959) to describe the mechanism underlying some forms of
schizophrenia. The basic insight of this theory was that the etiology of

the disease was correlated with some regular pattern of communication
within the social matrix. Most frequently this meant communication with
the person’s family. In a simplified form, this pattern of interaction can
be stated as a game following a set of injunctions:

1. start playing the game,

2. produce a certain behavior B,
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3. produce the logical opposite of the behavior B (not B),
4. do not leave the game.

A typical instance is that of a child and his mother. By the child’s
dependency, the first injunction is satisfied. The mother then demands,
in an overt verbal form, a behavior such as “‘love me.”” Yet in a covert,
body-level communication, she rejects the child’s response by conveying
the message *'if you love me you are no good.”” Again the fourth injunc-
tion is fulfilled by the simple inability of the child to exit to another
relation. The result is that the child may cut himself off from contact and
construct a separate reality. The pathogenic double bind is completed.

Similar sorts of double bind are very common. The ‘‘be spontaneous’
variety is perhaps the most familiar. Whenever a behavior is demanded
as spontaneous, the very nature of the request makes the demands im-
possible. Confusion ensues as to what behavior to adopt.

What all such situations have in common is the generation of a punc-
tuation of human behavior (Wilden, 1974) in a certain context, that is,
the parceling of discrete units of behavior, and the generation of injunc-
tions by communication that operate on these behavioral states in a
determined fashion. This can be represented in an operator domain:

3, = behavioral states,
S, = injunctions, k=1,....n.

Whenever a social and cultural context has produced such a punctua-
tion, “‘grammars’’ of communicative behavior will ensue. In many in-
stances, such behavior will take the form of a finite tree, with exit points
into different contexts, or to a different punctuation. Binds arise when
trees become infinite, that is to say, when loops arise. Such loops, in our
context, can be defined as an eigenbehavior for the equation that defines
the infinite tree. The interest in these cases lies in their eigenbehaviors,
since they are directly perceived or experienced as undesirable states.

In the double bind mentioned above the states are %, = {love, hate},
and operations %; = {not}, so that the loop can be represented thus:

not

In general, in a Bateson-like double bind (2-bind), one has a set of
states 3, = {b.b,}, and a tree constituted thus:
by - not by = b, > not b, = b; — -
with the eigenbehavior
bV = not(not(not(---))) = not(h").
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Note that the theory predicts that this eigenbehavior is different from
Fhe other states in X, the initial social punctuation, and hence patholog-
ical by the standards of that social context. Such a new state is expressed
or has a personal meaning as alienation.

. In.general then, we define an n-bind in human communication as an
mﬁmtc.z tree of operations on a set of n behavioral states, whose eigen-
behavior is a new state experienced as undesirable.

Negation on 2 states is but one way of producing binds. Consider, for
example, the following situation: ’

. You must make a decision.
. Either you are imprisoned or you obey the Law.

. It;lypu obey the Law, either you live as a slave or you must make a
choice.

In this case we have a 3-bind based on the or operation, in a loop

decide

SN
Law

imprisoned
or

slave

A more real.istic form of equation would be required to represent one
of the many eigenbehaviors described by Laing (1969):

—>it hurts Jack

by the fact

to think

that Jill thinks he is hurting her
by (him) being hurt

to think

that she thinks he is hurting her
by making him feel guilty

at hurting him

by (her) thinking

that he is hurting her

by (his) being hurt

to think

that she thinks he is hurting her

by the fact:l
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13.11 Differentiable Dynamical Systems and
Representations of Autonomy
13.11.1

Let us remember that a cellular autopoietic system can be defined as a
network of chemical reactions that satisfies two conditions: (1) the chem-
ical species produced are precisely those that constitute the chemical
productions producing the chemical species (i.e., closure of the network),
and (2) the chemical species produced specify a boundary, physically
demarcating the network of productions as a unit in space. The notion of
autopoiesis describes the necessary requirements for a class of systems
to generate the living phenomenology (Chapters 2-5), but it says little on
how to represent this organization. Let us consider now some represen-
tations of the cellular case, where closure is accomplished thought chem-
ical transformations.
Imagine a set of chemical species, ¢y, . . ., ¢,, where there is recip-
rocal interaction among any subset of them:
Cy C3
Ce——0

%\V
S~ \
C4
¢ O \ (13.4)

O

Consider here 3, = {Jack, Jill}, ¥, = {hurt, think, make guilty} =
{(h, t, g}. Then we have the trees:

Jill thinks x is hurting her =. t;

it hurts Jack to think y = = t,;

and

The double bind between these two persons arises as the eigenbehavior
of the equation
til

1
13 The operations acting on the c¢;’s are production and destruction, and
) the way to follow what happens is to observe the change in mass of
x = Jack. every c;. Thus let us consider the following operator domain 3
! 2o ={c1, ..., cn} = {concentration of n chemical species}
8 2 {3, ={p, d, +} = {production, destruction, sum of masses}
1 Se=0, k#0,2.
h
1 We can now consider some specific chemical network, for example,
t, Xy = pleg, x,) + d(xy, x,),
13.5
i Xy = plxy, x9) + d(x,, ¢y), ( )
x with the solution
. ' v = Y, X,V
There are, of course, very many questions that we cannot pursue here. X (%19, x,9) (13.6)

For example: What kind of experience would correspond to binds in-
volving more than one equation? How much can the meaning of the
states and injunctions (operations) change and still prpduce the same
resulting experience—that is, is there some set of equational constraint
valid in human communicational patterns?

/N N
d , p‘ d

SN AN

XV X4V : N Cy
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This equation and solution can be rewritten in the more traditional format
of chemical reactions:
Cg—> Xy + Xy —> 2xq, (13.7)
Xg > Cyq,
i.e., x, catalyzes its own production. For the eigenbehavior we can write
simply

CS-—>XI\7'—>)€2\7"> Cy, (138)

where ¢, c4 are given constant concentrations of species ¢, ¢4, and
XY, x,v are the concentrations of reactants ¢, ¢,.

This network corresponds to one form of the well-known Lotka-Vol-
terra reaction scheme. A simple autopoietic network can be thought of

having the general equations

xy = plxy, x,) + dlxy, xy), (13.9)
xi= plxiy, x) + dlxg, xiy), i=2....n

with an eigenbehavior of n interrelated trees xv =(x,v,... ,xnv?.

Let us perform the following reinterpretation of this operator domain.
First, take the variable x; as time-dependent, real-valued variables. Sec'-
ondly, interpret the operations p, d as differential operators in t‘he vari-
ables: production with a positive sign, destruction with a negative one.
With this further enrichment of the operator domain %, we can rewrite
(13.9) in its differential form

ﬂﬂ = ¢, — kxx,,

d (13.10)
d ’

—;f = kx,xs — k'x,,

where constant k, k' represent the rates of the two reactions; that is, we
introduce the time dependency in (4),

k
Cy=> X+ xy—> 2y,

&
Xog—> Cy4.

Thus in this case, the eigensolution xv can be related to the differentiaple
representation by linearizing (13.10) around the steady state and getting

the two interrelated solutions—or eigenvalues (X, X,):

|><|

<t

2 ki,

Much study has been devoted to Lotka-Volterra systems of this kind. .

Although simple, they exhibit a remarkable variety of damped and un

L (13.11)
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stable oscillations depending on the values of the affinities (k, k'), and
the perturbations the system is undergoing (fluctuations in c;, c,) (see
e.g., Glansdorf and Prigogine, 1971).

We have taken this Lotka-Volterra example to this point because it
contains, in a nutshell, an important feature and an important limitation
of the present approach that should be made clear. As we mentioned in
Chapters 7 and 10, the classical notion of stability in differentiable dy-
namics is the only well-understood and accepted way of representing
autonomous properties of systems. The work of Thom (1972), Eigen and
Schuster (1978), Rossler (1978), Lewis (1977), Bernard-Weil (1976),
Rosen (1972) and Goodwin (1976) provides excellent examples of the
fertility of this approach for the case of molecular self-organization.

These descriptions look for relevant variables to characterize the co-
herent, invariant behavior of a unit. Once a set of relevant variables has
been identified, a dynamical relation is adopted for the system. This
framework for the system’s representation has behind it considerable
experience from mathematical physics. In the systemic framework, the
criterion of distinction for the unit to be studied is given by the invari-
ances resulting from the differentiable description, such as steady states,
oscillations, and phase transitions.

An underlying assumption is, however, that there is a collection of
interdependent variables, and it is the reciprocal interaction of these
component variables that brings about the emergence of an autonomous
unit. This is to say that in the instances cited before, the differentiable
dynamic description becomes a specific case of organizational closure.
By adopting the differentiable framework one can mine the richness of
the experience behind it. At the same time one finds the limitations
imposed by it: More often than not, autonomous systems cannot be
represented with differentiable dynamics, since the relevant processes
are not amenable to that treatment. This is typical for informational
processes of many different kinds, where an algebraic-algorithmic de-
scription has proven more adequate.

Accordingly, the fertility of the differentiable representation of auton-
omy and organizational closure is mostly restricted to the molecular level
of self-organization. This is beautifully seen in the work of Eigen and his
notion of the hypercycle, recently examined in great detail by Eigen and
Schuster (1978); see Figure 4-1. The basic idea here is that a unit of
survival in molecular evolution is a closed circuit of reactions with certain
structural and dynamic characteristics. Eigen obtains several time invar-

_ iances for this chemical closure, which serve to illuminate features of the

early evolution of life. Also in a differentiable framework, Goodwin
(1968, 1976) discusses pathways of metabolic transformation with a view
to cellular unity.
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13.11.2

There are two comments that are in order at this point. First, it must
be noted that Eigen and Goodwin’s work is not equivalent to a formali-
zation of autopoiesis. This is so because starting from the need to use
the differentiable approach, they concentrate on the network of reactions
and their temporal invariances, but disregard on purpose the way in
which these reactions do or do not constitute a unit in space. Their unit
is characterized (is distinguishable) through the time invariances of their
dynamics. That is to say, they concentrate on aspect 1 of autopoiesis,
but not on aspect 2. This is just as well, for there is much to investigate
in just this aspect of recursive chemical networks. It is interesting, how-
ever, that the invariances of these systems also reflect space boundaries
in some cases, or at least it seems that this could be so in the case of
hypercycles. This is considered more explicitly in the well-known ideas
of Thom (1972), where a three-dimensional form is associated with a
class of dynamics.

A second comment at this point is that a clear distinction should be
made between models such as hypercycles, and the analysis of molecular
systems through generalized thermodynamics and dissipative structures
(Nicolis and Prigogine, 1977). This is so because a dissipative structure
takes a complementary view of a unit, namely, it considers the unit as an
open, or allopoietic, unit, characterized by the fluxes through its bound-
ary. It corresponds to an input—output description in contrast with a
recursion description, since the organization of the system takes fluxes
explicitly into account in the definition of the environment. In this case,
the units distinguished are, strictly speaking, different units than the ones
distinguish through the closure of some interdependent variables. This
is, of course, not to say that there is more merit in one or the other
approach. In fact, as discussed in Chapter 10, they have to be viewed as
complementary characterizations of a system. In the case of dissipative
structures, the general allonomous, input-output description is enriched
with the differentiable dynamic machinery, and through dynamic varia-
bles very detailed results can be obtained. Thus for example, it is pos-
sible, in certain cases, to relate explicitly a certain state of flux to the
emergence of a spatial boundary, as in the Zhabotinsky reactions.

It is still a matter of investigation how well the differentiable-dynamics
approach can accommodate, in a useful way, the spatial and the dynamic
view of a system. Both on the closure side (e.g., Eigen) or on the input-
output side (e.g., Prigogine), there are some striking results showing
spatial patterns arising out of recursive, nonlinear reaction schemata.
Thus, one can only say that this form of representation has so far pro
vided the most promising approach to coordination, autonomy, and clo
sure at the cellular and molecular level.

13.11. Differentiable Dynamical Systems 205

But it is in going beyond the molecular level, where we can’t rely on
a strong physico-chemical background of knowledge, that the insuffi-
ciency of the differentiable framework appears, and thus the need to
have a more explicit view of the autonomy/control complementarity, and
an extension of differentiable descriptions to operational-algebraic ones.
A typical borderline case, which we shall examine, is the immune system.
A further case where both approaches have been tried is the nervous
system. For example, Freeman (1975) prefers a differentiable view that
characterizes the time invariances of cell masses, while some [e.g., Arbib
(1975)] prefer a more algebraic view, emphasizing cooperation and com-
petition of processes.

We cannot give here an account of how all of these results hold
together. In this book I am concerned with emphasizing one aspect of
systems that has been neglected: autonomy. I have offered a character-
ization of what this means in general, and have provided a representation
for some key notions. Thus, for example, autopoiesis, as a case of
closure, is not exhausted either in the (possible) algebraic eigenbehavior
representation, or in the differentiable-dynamic one. The clear distinction
between a class of organizations and its representation must be main-
tained. Going beyond the differentiable framework of representation was
necessary in the past for the allonomy, control viewpoint. Likewise, for
the characterization of autonomy, it seems is necessary to go beyond the
differentiable framework, while keeping its unique insights for some cases
(such molecular organization). The algebraic framework presented above
is a step in that direction, though nothing more than a step.

13.11.3

Is there anything useful to say about the relationship between the
present algebraic approach to represent autonomy and the classical dif-
ferentiable one? In some sense one can see that the latter is a specific
case of the former, since we deal with some specific collection of oper-
ations' (differentiation, addition, and multiplication of numerical varia-
bles, and so on), and eigenbehavior reduces to the classical notion of
§tability. This only says to me that the general framework presented here
is capable of including this classical picture, and thus lends some credi-
bility to its more encompassing character. However, there are very many
detailed questions about the transition from algebraic to differentiable—
from eigenbehavior to stability—that are left entirely untouched here,
and where more work is needed. Clearly, both approaches cover some-
what non-overlapping aspects of systemic descriptions. Thus, it is nec-
essary to have a way of dealing with plasticity and adaptation. Natural
Systems are under a constant barrage of perturbations, and they will
undergo changes in their structure and eigenbehavior as a consequence
of them. There is no obvious way of representing this fundamental time-
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dependent feature of system—environment interactions in the present
algebraic framework. In contrast, the question of plasticity is a most
natural one in differentiable dynamics because of the topological prop-
erties underlying this form of representation; hence the notions of hom-
eorhesis and structural stability in all their varieties. To what extent can
the experience gained in the differential approach be generalized? How
can notions such as self-organization and multilevel coordination be made
more explicit in this context? Is category theory a more adequate lan-
guage to ask these questions? These and many more are open questions.

[ offer Table 13.1 to summarize some of the current tools available to
present autonomy. In this table I have put the two sides of the autonomy/
control complementarity, into correspondence with the two sides of the

closure/interactions complementarity. Thus we compare the point of view

for characterization of a system with the point of view for its represen-
tation. The terms included in the table are simple evocations of notions
that are currently more or less well developed. Clearly the lower half of
the table is far better developed with regard to mathematical represen-
tation. In this book I am concerned with the upper half.

13.11.4

As the reader can well see by now, there is much to say and do in relation
to the representations of autonomy. Let me risk being obnoxious in
repeating that what I have done here is simply to stake out descriptions
which embody, in a mathematical framework, some key ideas that are
pursued in this book: closure, autonomy, distinction, recursion. In no
way should these formalisms be confused or identified with the intuitions
behind them: rather they should be considered only as a vehicle to
sharpen precision and reveal inadequacies.

TABLE 13.1.

Representation

Closure Interaction
Characterization

Autonomy identity perturbations-
connectivity compensations
indefinite recursion cognitive domain
eigenbehavior resilience
stability ontogenesis

Control coordination of parts black box
hierarchical levels dissipative structures

finite recursion input-output
signal flow
state transitions
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We shall not say anything else about formal representations. Let them
stand in their open-ended, incomplete state. In the next and final part of
this book, I turn to an altogether different aspect of autonomy, namely,
that of the knowledge processes associated with the establishment of a
unity. In Table 13.1 it is the upper right-hand corner. In this corner, we
look at a unit as autonomous, but in its coupling and interactions with an
environment. In this larger view of the autonomous unit, the organiza-
tional closure results in a classification of environmental perturbations,
and hence in the establishment of a cognitive domain. We now turn to
analyze this in detail.
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