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Chapter 10

The Framework of Complementarities

10.1 Introduction
10.1.1

The world does not present itself to us neatly dxv1ded into systems,
subsystems, environments, and so on. These are divi ‘'we make
ourselves for various purposes. It is evident that differen erver-com-
munities find it convenient to divide the world in different ways, and
they will be interested in different systems at different times—for ex-
ample, now a cell, with the rest of the world its environment, and later
the postal system, or the economic system, or the atmospheric system.
The established scientific disciplines have, of course, developed different
preferred ways of dividing the world into environment and system, in
line with their different purposes, and have also developed different
methodologies and terminologies consistent with their motivations.

Furthermore, throughout this book we have encountered again and
again the fact that an observer-community may take alternative views of
a system that, at first glance, appear exclusive, but that nevertheless are
interdependent and mutually defining. Such was the case with autopoiesis
and allopoiesis, and with causal and symbolic explanations, two instances
that have been extensively discussed. It was evident through these dis-
cussions that keeping the interdependence of these views steadily in mind
was a key to a more balanced understanding of natural systems—partic-
ularly in the case of autonomy. It is time to recast this issue of interde-
pendence and complementarity of views in a more explicit form.

In this chapter, we present a conceptual and formal framework within
which a number of various preferred views on systems can be unified.
Of particular interest to us here are the differences stemming from the
study of natural systems (particularly biological and social systems) and
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man-made systems (such as engineering and cpmputer systems). Con;:n;
porary systems theory has developed gxtensxvely througlh ex;:erlenhave
the latter fields, but the insights derived from natura sys erlr(lsI have
remained by and large much less formal}y developed. I‘n tl:llS bood, rold
that the notions of cooperative interact{on, self-organization, aln atu o
omy—in brief, holistic notions—are .bas1c to the study of natural sys elid;
In the present framework these notions are not only made mhore (e):: it
and applicable, but are also presented as complements 'to the mt © e
ditional notions of system theory, such as control and input-outp

havioral description.

10.1.2 o .
The next section discusses in general terms the role d_istmctlon plai/.s in
the creation and recognition of systems. Tbe followmg'th.ref; Ze?c 1(:;1:
discuss certain dual perspectives on systems in some detail, inclu mgand
autonomy/control, state-variable/input—output, hollsm/redu‘ctlonll]sr:], and
net/tree dualities. The fifth section develops the 'su.ggc_:stlon tha st'on
alternatives are complementary rather than antagomstlc_, into a sugge; l’m
that their interrelationship can often be exp‘ressed precisely f}s arll al Jt)'lo X
functor relationship, in the sense of catc?gorlc.al ?lgebra. The. ina seictgon
discusses the holism/reductionism relationship in some detail, in relati

i hy of science. ' '
© lt‘ziu?'}:lc(;f;;fte}r/s will build on this foundation, to discuss the nou‘zt(lle%f
autonomy in terms of a (mathematical) theory of self-reference or 1

inite recursion and its applications.

10.2 Distinction and Indication
10.2.1

A distinction splits the world into two pardts,t;tl::t”’ eatr::d O;t;ns(;f u?:;

i *» and ‘‘system,” or ‘‘us’’ and “‘them, - One of

mzns"tn;gﬁgq;r?ltental of ali] human activities is the making of d}llstmctlo;l;
Certainly, it is the most fundamentql act of syste_m.the(')rl};., t ?t \;fgn <
of defining the system presently of interest, of distinguishing 1

| : t. . .
engir;?rizfi[:)ns coexist with purposes. A p?rticularly basu? case is a.utt(;ri;
omy—a system defining its own boundaries aqd attempt_mg. tf)dmail}trl 5
them; this seems to correspond to what we thlr_lk of as mdlv:j l‘lal(})’éial
can be seen in individuals (ego or identity maintenance) an 1tn snl .
units (clubs, subcultures, nations). In such‘cases, there is no (:1 isilin-
distinction, but an indication, that is, a markl’r}g‘ f)f o’r’le of th? t(‘]NOd ot
guished states as being primary (*‘this,”” 'L’ “"us,’ e'tc.)', in c;e e,ncer.
the very purpose of the distinction to create this indication (Sp

Rrown 1969: Varela, 1975a).
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A less basic kind of distinction is one made by a distinctor for some
purpose of his own. This is what we generally see explicitly in science,
for example, when a discipline ‘‘defines its field of interests,” or a
scientist defines a system that he will study.

In either case, the establishment of system boundaries is inescapably
associated with what T shall call a_cognitive point of.vigw. that is, a
particular set of presuppositions and attitudes, a perspective, or a frame
in the sense of Bateson (1959) or Goffman (1974); in particular, it is
associated with some notion of value, or interest. It is also linked up with
the cognitive capacities (sensory capabilities, knowledge background) of
the distinctor. Conversely, the distinctions made reveal the cognitive
capabilities of the distinctor. It is in this way that biological and social
structures exhibit their coherence.

10.2.2

The importance for system theory of cognitive coherence (or the cogni-
tive point of view, or cognitive capability) is a theme that runs throughout
this book. Because of the focus on system theory, we shall feel free to
invoke the idea.of an observer, or, observer-community: one or more
persons who embody the cognitive point of view that created the system
in question, and from whose perspective it is subsequently described.

A simple but fundamental property of the situation involving a system
and an observer is that he may choose to focus his attention either on
the internal constitution of the system, or else on its environment, taking
the system’s properties as given.>That is, an observer can make a dis-
tinction into an indication through the imposition of his valga}lf the
observer chooses to pay attention to the environment, he treats the
system as a simple entity with given properties and seeks the regularities
of its interaction with the environment, that is, the constraints on the
behavior of the system imposed by its environment.! This leads naturally
to the problem of controlling the behavior of the system, as considered
in (engineering) control theory. On the other hand, the observer may
choose to focus on the internal structure of the system, viewing the
environment as background—for example, as a source of perturbations
upon the system’s autonomous behavior. From this viewpoint, the prop-
erties of the system emerge from the interactions of its components.

Biology has iterated this process of indication, creating a hierarchy of
levels of biological study. The cell biologist emphasizes the cell’s auton-
omy, and views the organism of which it is part as little more than a
source of perturbations for which the cell compensates. But the physiol-

! Calling § ‘‘the system’’ rather than ‘the environment’’ already indicates a preference,
for marking S that is,the language incorporates the preference. But we may speak of
“‘marking the environment’ to suggest that there are in fact two distinct possibilities.
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ogist views the cell as an element in a network of interdependences
constituting the individual organism: This corresponds to a wider view of
environment, namely the ecology in which the individual participates. A
population biologist makes his distinctions at a still higher level, and
largely ignores the cell. A similar hierarchy of levels can be found in the
social sciences. It seems to be a general reflection of the richness of
natural systems that indication can be iterated to produce a hierarchy of
levels.

“At a given level of the hierarchy, a particular.system can be seen as an
outside to systems below it, and as an inside t0 system‘sk,abo\"éfi't;“thus:,
The status (i.e., the mark of distinction) of a given system changes as one
passes through its level in either the upward or the downward direction.
The choice of considering the level above or below corresponds to a
choice of treating the given system as autonomous or controlled (con-
strained). Figure 10-1 illustrates a variety of configurations of systems,
subsystems, and marks, and Figure 10-2 illustrates the hierarchy of levels.

10.3 Recursion and Behavior
10.3.1
In system theory, the autonomy/control distinction appears more specif-

ically as a recursion/behavior distinction. The behavioral view reduces
a system to its input-output performance or behavior, and reduces the
environment to inputs to the system. The effect of outputs on environ-
ment is not taken into account in this model of the system. The recursive
view of a system, as expressed in the closure thesis, emphasizes the
mutual interconnectedness of its components (von Foerster, 1974; Var-
ela, 1975a; Varela and Goguen, 1978). That is, the behavioral view arises
when emphasis is placed on the environment, and the recursive view
arises when emphasis is placed on the system’s internal structure.

If we stress the autonomy of a system S, (see Figure 10-1), then the
environmental influences become perturbations (rather than inputs)
which are compensated for through the underlying recursive interde-
pendence of the system’s components (the S;_,’s is the figures). Each
such component, however, is treated behaviorally, in terms of some
input-output description.

The recursive viewpoint is more sophisticated than the behavioral,
since it involves the simultaneous consideration of three different levels,
whereas the behavioral strictly speaking involves only two. This is be-
cause the behavioral model, in taking the environment's view of the
system, does not involve making any new distinctions. But expressing
interest in how the system achieves its behavior through the interdepen-
dent action of its parts adds a new distinction, between the system and
its parts.

10.3. Recursion and Behavior 8
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(b)

(d)

Figure 10-1

Variou i
s configurations of systems, subsystems, and marks: Each configuration

.. . . ll ll . Tl

From Goguen and Varela (1978a).
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‘ e ther
1Sigaugll::\mmatic evocation of a hierarchy of system levels. See text for fur
discussion.

From Goguen and Varela (1978a).

10.3.2 ‘
The following may help to make this seem less abstract. The most tra

i i i tem is
iti dependence of variables in a sys
ditional way to express the mter‘
bly differential equations (cf. Section 7.2.4). An autonomous system can
be formally represented by equations of the form

;= Fi(x, 1) for 1=i<mn, (10.1)

x,) is the state vector of the system. The au)tot;:‘;
mous behavior of the system is desgribed by a.soluuo}r: vectoif1 x(;n bl
satisfies (10.1). This involves trea.tmg everythmg_as ffapge?hegenvﬁon-
same level, and all variables as being obs.ervable; in effect,

ment is treated as part of the system (or ignored).

i re-
However, the effect of the environment on the system can be rep

sented by a vector e = (e, . -+ » e, ) of parameters, giving

i;= Fi(x, e, 1) for 1=<i=n,

where x = (x4, - - - >

(10.2)
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which explicitly takes account of two levels. Solutions to the system
(10.2) are now also parametrized by e, that is, they are of the form x(e, t).

The situation of (10.2) can be elaborated in two directions. In control
theory, it is usual to assume that the internal variables x of the system
are either unobservable or of no direct interest, and that we have instead
direct access to (or interest in) an output vector y of variables that are
functionally dependent on x. The variables e are usually taken to be
under the control of the observer, and the question is posed, how to use
those variables to obtain certain desired values of y. The equations are
thus of the form

X;= Fix, e, t), y = H(x). (10.3)

Strictly speaking, the equations span three levels, and can be used, for
example, to infer information about the system’s internal state, but the
emphasis (‘*'mark’’) is on the environment, which is identified with the
observer. Behavior appears as an input-output function y(e, ?), the
observable results of applying the inputs (also called **controls”) e to the
system.

An alternative elaboration of the situation of (10.2) views the vector e
as not necessarily or particularly under the control of an observer, but
rather as a source of perturbations upon (10.2). For example, the com-
ponents e; of e may be some coefficients, which are regarded as constants
in the original equation (10.1). A natural question to pose is the stability
of the system under such perturbations, that is, the relation of (10.1) to
a perturbed system

X;=Fix, e, 1) + 8F (x, e, 1) (10.4)

_in which 8 (in a fairly intuitive notation) represents a "*small change.” It

is known, for example, that changes in structural constants can cause the
system to undergo a **catastrophic’’ change [in the sense of Thom (1972)]
into a new configuration.

The system (10.2) has in it nothing that intrinsically prefers the ap-
proach of either (10.3) or (10.4). This choice depends on the interest of
the analyst.

Note that recursion plays a role in all these formulations, but is more
obscure in the control-theory interpretation. On the other hand, the
behavioral information, though still available, is more obscure in the
stability interpretation (10.4). We are not, of course, claiming that either
of these approaches is inherently better.

10.3.3

Historically speaking, some of the many possible approaches to systems
have been much more developed than others. The most highly developed
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1 i vior,
arts, in fact, center on the notions of control, mpu?—output. behal o
I;nd s’tate tran’sition. This is presumably because of the interest in apply
roaches in engineering. . . .
th?l"st?earrl)(l))tion of autonomy, however, 18 particularly 1mp0rtanl; gor niléuzll
systems (biological and social systems), 'find thg l.aCk of a well- ?::erpde-
tli/eory of autonomous systems is a serious dlfflculty. An relpgl cer oo
signing an artifact will choose the inputs qf 1nt§lrlels)t t% eql:;te L
icati i -e that the choice will be a .
lication with some assurance e
E?flogist studying a cell is forced to acknowleglge tthet avu;gzglr;l;f (;)0 the
i i ist’ s for input and outpu '
cell: if the biologist's preferenc.e . . output variab e L il
’s i zation, his cognitive-dom .
match the cell’s internal organiz T eutarly
he hierarchy of levels seem
be useless. Furthermore, t s O Py
its 1 1 systems, so that it is gen y ‘
assert its importance for natura oy
(tls take account of at least three levels. Even whehq thhe iovweelst\;;:‘\éer:e s
i t higher level,
d. the role it plays at the nex
very well understood, Xt higher leve . b o
is i i tems, can be quite 0DS
interconnected with other sys ns, . ' ym
lbSiochemist may be able to describe a part.lcular metabolic lgo;;ow l};
effectively by a transfer function, but be quite unable to sp::c;tyo o
fits into the overall metabolic process of the cell as a coherent autop
ole. ‘
thhis situation of being unable to understand l;]OW e;emetptlsq, Z;ffzrclt?;glt;
dinate or somehow functio
ll-understood elements, coordl . . vely
::)Zether at the next higher level, is quite cc?mmon in the studysefvlgoped
systems, and is another source of our motivation for a better-

theory of autonomous systems.

10.3.4 .
Some fragments of a theory emphasizing the autonon:yltofb :});Zi’eigzsgg
i the computer-gestalt,
but are far less developed than : : i
eXlS;éacuh In fact, the dominance of control views 1n contemporatr}i/ rslyts0
2tlgris thec;ry makes it closer to a theory of syst.em cgmponents X?Sting
one of systems as unities (totalities). Let’s mention briefly s;)mecferisﬁcs
approaches to representing, in formal terms, some of the chara
m : . . . _
Of;iurtsotna(;ldyforemost, the idea of stability derived from_;lissflcal r(rgeeccl?:n
i i d used. As we said belore
ics has been extensively studied an . \ ;
l7CS2 4? a set of interdependent differential equations ca; be us(eig;; reig‘
sent ties of a whole system. Rosen ,
resent the autonomous proper _ ) osen (1972 ol
65) have applied this perspe (
erall (1973), and Lange (19 : tive 1o e ore
i i hasis on autonomous be :
tems with various degrees of emp : ! o
zcheific examples can be found in population blology (1\/11';\;/6 lzéls)Sler’
rr?olecular biology (Eigen and Schuster, 1978; Goodwin, ;

i i biology (Katchal-
: ~Weil, 1976), and more recently in neuro
1‘978,“Bef‘112ir;i qul Rinmenthal 1974 Freeman, 1975). Some thought has

i

i
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been given to cooperative interactions in this area of hierarchical multi-
level systems. The idea of hierarchy is often presented from the point of
view of the interdependence of different levels of system descriptions
(Pattee, 1972; Whyte et al., 1968; Mesarovic et al., 1972). Particular
instances of hierarchical structure, including multilevel cooperation, can
be found in Beer (1972), Kohout and Gaines (1976), and Baumgartner et
al. (1976). Goguen (1971, 1972) presents a general theory of hierarchical
systems of interdependent processes. Its basic ideas are interconnection,
behavior, and level, and its theoretical framework is categorical algebra.
A last area in which the idea of a whole system is somewhat explicit is
that of self-organizing systems. Work in this area, based on an informa-
tion-theoretic approach, includes von Foerster (1966) and Atlan (1972,
1978).

We do not intend to unite all these various threads of research together
in a single framework. Rather, we emphasize the ways in which pairs of
seemingly different points of view, such as autonomy/control, are com-
plementary, in the sense of contributing to a better understanding of
natural systems. But the idea of complementarity, fundamental though
it seems, is still vague. The following develops an explicit definition.

10.4 Nets and Trees
10.4.1

If we retain interest only in the connectivity of a system, it is possible to
represent the recursion/behavior duality by a network/tree duality. Intu-
itively, the nodes in these nets or trees represent the elements or com-
ponents of a system, while their links represent interactions or intercon-
nections. The reciprocal connectivity of a net suggests the coordination
of a system’s elements; a tree structure suggests the sequential subordi-
nation of a system'’s parts, each part having its own well-defined input-
output behavior description. To be sure, in retaining only the basic
connectivity of a system’s organization, much is discarded in the net/tree
representation. We intend to use this convenient general representation
to study complementarity.

Now to the definition of nets and trees. Let there be a set
{vy, . . ., v,}of nodes (components or parts), which are to be intercon-
nected by a set E = {e;, . . ., e,} of edges (relations or processes).

Definition 10.1

A network is a directed graph G, that is, a quadruple G = (|G|, E,
do, d;), where |G| = {v,, . .., v,}, and 8;: E = |G| are the source
(i = 0) and targer (i = 1) functions, from the edges to the nodes of G.
If e € E, dge = v,and d,e = v', then we write e: v = v'.
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Definition 10.2

10.4. Nets and Trees
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In some sense the tree (10.6) “"unravels’ or "‘unfolds’’ the graph (10.5)

A path from v to v’ in a graph G is a finite sequence p=égy. - .eq of
edges that are adjacent, that is, satisfy 0,e; = dpeisr for 1 =i =n,
with d,e0 = vand ;€5 = v'. If dyp = vand 3,p = v', then we write

p: v——)U’.

Example 10.3
Consider the graph G

1
Y
=" 2 (10.5)
v
4

The nodes 1, 2, 3, 4 might represent four physical locations, each with
a radio. Because of differences in transmitter and receiver strength,
available frequencies, and terrain, communication is possible only
along the channels indicated by arrows in (10.5). For example, there
is a mountain between 1 and 4. Let us assume that node 1 is of
particular interest—say it is our base. Then we are interested in the
patterns of transmission which are possible starting from our base. For
example, to reach node 3, if channel g is out, we can send a message
via fij; to verify its correctness, it could be sent back to node 1, via
the path fijk; node 3 might also generate a reply, which would require
a message to be sent to node 2, giving a path ijk f, and so on. Thus,
we are interested in the set of all paths in G with source 1. This
collection itself has a branching structure, because starting with a given
path, it can sometimes be developed further by choosing alternative
edges to get alternative paths. The collection of all choices can be
represented by the following tree:

T
f
f

(10.6)
fg fi

fgk ‘fgh fij

fro i i

grarshrsloiidl.t:o _make this more precise we need to define tree, pointed

b l,lom e xd.ea of _structure—preserving mappings of graphs called
omorphism. First we give the general construction.

Definition 10.4
A pointed graph G is a 5
‘ -tuple (|G|, E, d,, 9
80:481) is a graph and a € |G|is a vertex 0s 91, @) such that (|G|, e,
pointed graph is reachable | ' .
path @ — vin g able if for each vertex v € |G| there is a

A graph G is loop-fi 1
p-free / .
path v — vl- ‘f lf‘f()r all v, v (S lGl there Is at most one

A tree is a reachable loop-free pointed graph.

Definition 10.5

Le intea
L;t(g)ej‘c&pomted .graph (|G|, E, 3y, 3y, a). Then the unfoldment
¢ i) vf; ér(l)g|a ;s the graph in which: |U,(G)| is all the paths p:
ro s the edges of U,(G) are the pai ,
a pairs {p, pe) such that
p, pe € |UG)|, and e € E; dp, pe) = p, and d,(p, pe) = pz.

l“ ]7(11/1 a > . . —> d, dnd s l(lkell ! bé ”l( I? int
]”( i alils wrirten la a Py
f() L (1(6)‘ l ’ ’

Proposition 10.6

Let G be a pointed grap}
ph (|G|, E, 9y, 0
of G from a. Then U ,(G) |is clt rree? o @ and Ua(GYthe unfoldment

PROOF: We must show that U,(G) is a pointed, reachable, and loop-free

graph. By the definition of U o :
with point 1,: @ — a. <(G), we know that it is a pointed graph,

Uvz/é)now sho_w that U,(G) is reachable. Consider a node p: a = v of
(G),say p=e,...e, ¥ 1,, with ¢; € E. Then we can show that

g = {1, e){eq, epe ){epe,, €0e,€5), . . . (€ .. .C1,€o ...E)
is a path from I, to p in U,(G). Clearly its source is 1,, since
30g = 3¢(1q, €9) = lg,
and its target is p, since
01g=09:{€o...C-1.€ ...6) =€ ... =P.
Moreover, ¢ is a path, since its edges are adjacent, that is,

d,(e
0+ €€ ...86 =
> k+1>_ao<€o C e Ckat s € .- . Ery2)
=€y ... Crpq for 0=<=k<n-—1.

So there is a path from 1, to every node in U,(G).
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Last we show that U .(G) is loop-free, that is, for every pair of nodes
p, p'in U,(G) there is at most one path p’ = p in U,(G) with target
p. Consider againp = €g . - - €n>» and let’s show first that there is exactly
one edge with target p, €.8., exactly one path of length one. Any edge
with target p is of the form {(r, re,), with re, = p- Thus r must equal
€o - - - €n—1> and the unique edge is {eg ... Cn-1> py. This says that if
p' # p,apath p' — p must end with edge (€o . - - €n-1> p). Let now
Pr=¢€o- - €k Then a path p’ — p must be a composite of a path p’
— pa_, with edge (Pn-1, p)- But we may reason in a similar way for the
node p,_,, and the path p' = Pnp-1s Pn-2> and p’ = Pn-2> and so on.
Eventually we must find that p’ = p, for some k, and the unique path
p' — pis of the form

(Pr> Pk+1><Pk+17 Pk+z> e o A Pa-1s p) -

If p=p'. the unique path p — p' is the null path at p. Thus U,.(G)is
loop-free, and the proof is complete.

Definition 10.7
Let G = (|G|, E. 3,91 and G ={(G'|,E" 3/ 3, be graphs. Then

a graph morphism is a pair (| F\, F) of functions |F|: |G| = |G'| and
F: E — E', such that the source and target relationships are preserved,
that is. such that 8y (F(e)) = | Flao(e), and 3,/ (F(e)) = |Flai(e): i.e.,
such that the diagram :

E____F_—> E'
9 ;'

IF ,
|G|——1G"|

commutes for i = 0and i = 1. We abbreviate {|F|, F) to just F. A
morphism of pointed graphs, from G to G', is a graph morphism F
such that |Fla = a', where a, a’ are the selected vertices of G, G'

respectively.

10.4.2
The relation between a graph G and its unfoldment is, from our perspec-
tive. very interesting. Given a node a in G, then U, G)is a loop-free
version of G. We could say U4(G) expresses G as a (possibly infinite)
chain of subordinated choices, starting from the selected node. The un-
foldment of G optimally -covers’® G in a sense that is made precise
through the “-universal property’” of U,(G), that any graph morphism F:
- . e emond theanah a “covering morphism’ Cgt U.(G)

10.4. Nets and Trees
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G, defined as follows: for
: p anode of U,(G), let |C = :
(p\,}vpe) an edge of U,(G), let C(p, pe)a= e. |Colp = dupiand for
U (é)n?}\iv st;ow that C. is a graph morphism. For (p, pe) an edge of
Y pt;ecglr;s oCp. pe) = doe. |Cslon(p, pe) = |Celp = d,p, and dee
- ilcclpe _f;_z;eels aapatthlso, 80,Ce{p, pe) = d,e,and |Cglo(p poe)
. = 9, pe = d,e. We now show th ism |

a tree can be factored through Cy. W that any other morphism from

Theorem 10.8

Lc){ Gdbe a pointed graph, let T be a tree, and let F: T — G be a
/.701/1{(' graph morphism. Then there is a unique pointed graph morpl
ism F: T — U,G) such that -

C

G < UG

F F

commuites.

iSKETTCHhOF PROOF: Let v € |T|. Then there is a unique path p: r = v
dnf. , where r is its root, and F,: Fr = a — Fv is a path in G. Now we
efine | F|v = Fp,.and for e: v = v', an edge in T, we define I:;e =(F
(Fp)Fe), an edge in U,(G). Then ;

|Cel|Flv=|C¢|F, = Fo,p =|Fl|v,
and
C(;ﬁe = C(}<Fp$ (Fp)Fe> = Fe.
Thus
CF=F.
We now verify that F is a pointed graph morphism:

Aa(,ﬁe = 3 Fy, (F,)Fe) = F,,
|Flage = |Flv=F,, and Fr=Fl1, = 1,;
9,Fe = 0(F,, (F,)Fe) = (F,)Fe = F(pe) = |F|a,e.
Thus F satisfies the requi iti
' quired conditions. [For a detailed pr
uniqueness argument, see Goguen (1974, Theorem 7).] proof and t}[1:6]

10.4.3

This i i i
imer;heorzm brings into focus the basic intuition that there is a mutual
ependence between a system’s elements (as a graph) and the se-
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eir interconnections (as a tree). To express
the class of pointed graphs, and let Q‘ be thfa
G' are pointed graphs, let (G, G')
h morphisms from G to G'. .

h, we have a mapping

quential subordination of th
this more clearly, let 4r* be
class of trees. Also, if G and
denote the set of all pointed-grap '

Since every tree is by definition a pointed grap

9'——————9F Gr

which simply views trees as pointed graphs. We also have a mapping

Gr* LN

e tree U(G) that covers it. These

. . . hth
which assigns to every pointed grap c ree UG o Mor (G, iy

i ightly interloc
two mappings F, U are g
the set of morphisms from G to FT, we have

G «—%— FU(G) U(G)
h Fh for a unique h
FT T

by Theorem 8. This says that there is a bijection
0. Gr*(FT, G) — gr(T, UG)

defined by ¢(h) = fi. We shall call (F, U, ¢) 2 complcmenra.rify betvlvetzrsl
@r* and 7. This notion of net/tree complementarity effecliwely Sr:itztes
ipti tems, in such a way that each neces
two levels of description of sys s, in cach fecess Aot
i i this point to see that simi
the other. It is convenient at . .
complementarity apply to other situations, and so we now turn to the

general notion.

10.5 Complementarity and Adjointness

10.5.1 . . _
The net/tree complementarity is a particularly clg,ar 1;1stantch§ oifdt::, i1‘r11ttehre
iti i tion develops this
dence of apparent dualities. Thl'S sec velo .
zzsz?al setting of category theory, which is becoming mcr]e;’/s;r)lglé:;ggl;
i 1973: Arbib and Manes, .
in systems theory (Goguen, A ) : D
ili i i i d a leisurely introductio
liar with this terminology may fin .
‘(Jlrg’?gn 11976) or Arbib and Manes (1974); we attempt to stay at a fairly

intuitive level, although some technicalities arebin(c;_v1tab1e.e ructute by

APPSR . is that it embodies som

The intuitive idea of a category 18 1 o with all
it iects having that structure, toge

exhibiting the class of all ()bjcc‘ . (Somé:

the structure-preserving mappings or morphisms among them. (

. . e operi
v emen technicallv. categories assume there 1s an associative op

o
Z
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tion of composition on those morphisms whose source and target match.)
The idea is due to Eilenberg and MacLane (1945).

For example, pointed graphs and pointed-graph morphisms constitute
a category. If € is a category, and A, B are objects in €, we shall let €(A,
B) denote the set of all morphisms in 4 from A to B.

Usually, we are interested not only in objects from various categories,
but even more in certain constructions performed on the objects of one
category to yield objects of another category. For example, unfoldment
is a construction performed upon graphs that yields trees. This construc-
tion has a kind of consistency, in that it can also be extended to the
morphisms; that is, a morphism of pointed graphs induces, in a natural
way, a morphism between their unfoldments. This kind of consistency is
expressed by saying that the construction is functorial, or is a functor.
(More technically, this has to do with the preservation of the composition
of morphisms.)

However, the unfoldment construction is natural in a much stronger
sense: the ‘optimal’’ covering of a graph is its unfoldment; this is ex-
pressed by the universal property of Theorem 8, and the bijection ¢ of
the previous section. The concept of adjunction generalizes just this state
of affairs to the following situation:

Let o and & be categories, let F be a functor from & to 4, and G a
functor from % to . Then an adjunction is, in addition, a natural bijec-
tion

¢: B(FA, B) — (A, GB).

This says that every morphism f; FA — B determines a unique morph-
ism ¢( f): A = GB. [The precise sense of the ‘*naturalness’ of ¢ is that
of natural transformation, due to Eilenberg and MacLane (1945)—which,
however, we shall not define here. The idea of adjunction is due to Kan
(1958).]

The discussion at the end of the previous section shows that the net/
tree complementarity is an instance of the concept of adjunction. What
we now propose is to explore the view that the precise concept of ad-
Junction is an application of the general (and vague) concept of comple-
mentarity.

10.5.2

Another example of this is Goguen’s (1973) adjunction between minimal
realization and behavior. Let of be the category of automata (in some
fixed sense that we shall not explain in detail), and let & be the category
of input-output behaviors of such automata (with appropriate morph-
isms). Then there is a functor from & to & that constructs the minimal
automation M(B) having the behavior B; and there is a functor Be from
s to B that constructs the behavior Be(A) of an automaton A. More-
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over, there is a natural bijection
¢: B(Be(A), B) > A(A, M(B))

that expresses the complementarity of the notions of internal state tran-
sition (as embodied in automata) and input-output behavior. Goguen
(1972) has shown that many other classes of systems exhibit such a
complementarity with their input-output behaviors.

Here is still another example. If G is a graph, the collection of all paths
(from all sources) in G forms a category whose objects are the nodes of
G, and whose morphisms are the paths of G: this category is denoted
Pa(G), and called the path category of G. Pa is a functor from the
category %r of graphs to the category $ar of (small) categories. There is
also a functor F from $at to %r, which merely forgets the additional
structure that categories have over graphs (namely, the possibility of
composing morphisms), regarding the objects as nodes. and the morph-

isms as edges. Again, there is a natural bijection
¢: 6at(Pa(G), €) — 4r(G, F6)

expressing the complementarity of graphs and categories. Alternatively,
Pa(G) is the free category generated by the graph G, and the adjunction
(or the corresponding “‘universal property’’) expresses this relationship
(Goguen, 1974).

Lawvere (1969), in a particularly fundamental paper, suggests that
there is a complementary relationship between the traditional conceptual
and formal viewpoints in the foundations of mathematics. This duality
also appears as a semantic syntax pair, in that Lawvere (1963) has shown
an adjunction between a functor that associates with each algebraic the-
ory its category of semantic models (i.e., its algebras), and a functor that
extracts from each category the optimal syntactic theory of its algebraic
component of structure.

The general system theory of Goguen (1971, 1972) involves a hierarchy
of levels, much as pictured in Figure 10-2, with functors going outward
if they regard a component at a lower level as a whole system at the next
higher level, and functors going inward if they compute the behavior of
the whole system, viewing the result as a single object at the lower level.
There is a base level of given “*objects’” out of which systems can be
constructed, and objects at level i + 1 are interconnections (that is,
systems) of objects at level i. Goguen shows that each pair of an outward
and an inward functor is an adjunction. The inward functor is in fact the
fundamental categorical construction known as “limit.”’ Goguen also
shows that the construction of interconnecting a system of systems (over
some common subparts as terminals’’) to get a single system, is given
by the dual concept of “*colimit,”” which also appears as an adjunction:
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;l;]lzlssblsolf(og;Eslglsgee\t/?dilnvte"detaxls, but the connection with themes of

This general point seems particularly clear in the context of systems
theory: Thgre is no whole system without an interconnection of its parts;
and there is no whole system without an environment. Such pairs are:
mutually interdependent: each defines the other. What is remarkable
about the not.ion of adjoint functor is that it captures the notion of
complementarity in a very precise way, without imposing any particular
model'for the nature of the objects so related. It is also worth noting that
ther.e. is a well-developed theory of adjunctions; for example, the com-
position of two adjoint pairs of functors is another adjoint pair. bf course
not al'] pairs of descriptive modes are complementary, and similarly noi
all pairs of functors are adjoint. The so-called "adjoint functor theor;:m”
provides some general conditions for when a given functor in fact does
hgve an adjoint; and again, this may well find some application in general
discussions about system theory. Much more work, including many fur-
the'r examples, will be needed to discover the proper domain of appli-
cation, and the limits, of the adjointness idea.?

10.6 Excursus into Dialectics
10.6.1

.In general, when different modes of description appear as opposites, it
is more satis.fact.ory to consider them as complementary instead. Thig is
the case, qpnte rigorously, with the apparent dualities net/tree and recur-
§10n/bghgv10r, as we have seen above. On a more intuitive level, there
is a mmxlar relationship for the pairs autonomy/control and opereitional/
symbolic discussed in earlier sections. As a matter of fact, we may go
one step further to duality and dialectics as a broad philos;)phical idea
Accord{ngly, I would like to go into a brief excursus to discuss trinities‘

By trinity I mean the consideration of the ways in which pairs (poles.
extremes, modes, sides) are related yet remain distinct-—the way the);
are not one, not two (Varela, 1976). The key idea here is that we need
to replace the metaphorical idea of *“trinity’” with some built-in injunction

- » El can te” Uus /I() w to O 1T i

* = the it / the process leading to it.

Tpe slash in thi§ star (=) statement is to be read as: "‘consider both sides
of the /,”” that is, ““consider both the it and the process leading to it.”

2 We have not discussed at all the noti ity i
¢ ' tion of complementarity in physics, and wheth
present framework is applicable. To do so is completely beyond my comi)etence. erthe
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Thus the slash here is to be taken as a compact indication of a way of

transiting to and from both sides of it.
We can now transcribe the familiar relationship between nets/trees into

a star form:
« = network / trees constituting the network,
because the duality is connected with processes in both directions quite

explicitly. The totality (the net) is seen as emerging of resulting from
part-by-part approximation of the trees (the process leading to it).

Similarly we may consider a more generally appealing star:

% = whole / parts constituting the whole

By a whole, a totality here we mean a simultaneous interactions of parts
(components, nodes, subsystems) that satisfies some criteria of distinc-
tion. Thus a star of a more operational flavor is

# = stability / approximation in time.

Let us formulate a number of other interesting dualities in this com-
plementarity framework, informally called star. To this end, take any
situation (domain, process, entity, notion) that is autonomous (total,
complete, stable, self-contained), and put it on the left side of the /. Put
on the other side the corresponding process (constituents, dynamics).

For example:

being/becoming environment/system
space/time context/text
reality/recipe semantics/syntax
simultaneous/sequential autonomy/control
arithmetic/algebra symbolic/operational
analog/digital

In each of these cases the dual elements can be seen as complementary:
they mutually specify each other. There is, in this sense, no more duality,

since they are related.

10.6.2
Notice that this separation of duality is no

different level as a process.

More generally, we may see that this view of complementarity signifies
a departure from the classical way of understanding dialectics. In the
classical (Hegelian) paradigm, duality is tied to the idea of polarity, a

*synthesis’” (in the Hegelian
sense), since there is really nothing “‘new,’’ but just a more direct ap-
praisal of how things are put together and related through our descrip-
tions, not losing track of the fact that every “'it"” can be seen on a
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clash of opposites. Graphically,
®=20.
;thehbasw f(;rm of these kinds of duality is symmetry: Both poles belong
o the same level. The nerve of the logic behind this di ics i i
_ alect 3 ;
pairs are of the form A/not-A. ecties s negation:
In this presentation, dualities are adequately represented by imbrica-

tion of levels, where one term of th i
. , e pair emerges from
ey g the other.

2—»@

The basic form of these dualities is asymmetry: Both terms extend across
!evelsl. The nerve of the logic behind this dialectics is self-reference, that
Is, pairs of the form: it / process leading to it. ’
Pairs of opposites are, of necessity, on the same level and stay on the
same le‘vel for as long as they are taken in opposition and contradiction
Pairs of the star form make a bridge across one level of our description'
and they specify each other. When we look at natural systems nowheré
do we ;{Ctually find opposition except from the values we wish,to put on
them. The pair predator/prey, say, does not operate as excluding oppo-
Slte.S, but both generate a whole unity, an autonomous ecosystemic go-
;n:;ug, w;lhesre there are gomplementarity. stabilization, and survival values
i;)ter;);tign,o the effective duality is of the star form: ecosystem/species
dur]/;i::y generalize this to say that there is an interpretative rule for
For every (Hegelian) pair of the form Alnot-A there exists a star where
the apparent opposites are components of the right-hand side.

It is, .[ suspect, only in a nineteenth-century social science that the
abs.tractlon of the dialectics of opposites could have been established
This also applies to the observer’s properties. We have maintained ali
a}ong that wh_atever we describe is a reflection of our actions (percep-
thl.‘lS, properties, organization). There is mutual reflection between de-
scriber and description. But here again we have been used to taking these
terms as oppgsites: observer/observed, subject/object as Hegelian pairs
From my point of view, these poles are not effectively opposed bui
moments of a larger unity that sits on a metalevel with respect to ’both
terms. Ir} other words, it is possible to apply the interpretive rule here as
vyell. Briefly stated, this interpretation could be phrased as: conversa-
thI'lal ‘]?a'ttern / participants in a conversation. I am here using “‘conver-
satton”’ in a general and loose sense. Species interaction achieving a
stable ecosystem can be thought of as the biological paradigm for a
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conversational domain. But human interactions can be similarly treated,
as participants engaged in dialogue, whether with each other, with the
environment, our with ourselves. This is the process underlying the
conversational patterns that constitute the autonomous unity to which
we belong and which we construct. We shall return to human cognition
and conversational pattern in Chapters 15 and 16. T only wanted to point
out that the star framework could be applied to the observer’s properties
as well, to see knowledge as an it generated through a process.

10.7 Holism and Reductionism

10.7.1

If we think of the philosophy of science, the duality holism/reductionism
comes to mind as analogous to the material previously discussed in this
chapter.

Most discussions place holism/reductionism in polar opposition
(Smuts, 1925: Lazslo, 1972). This seems to stem from the historical split
between empirical sciences, viewed as mainly reductionist or analytic,
and the (European) schools of philosophy and social science that grope
toward a dynamics of totalities (e.g., Kosik. 1969: Radnitsky, 1973). In
the light of the previous discussion. both attitudes are possible for a given
descriptive level, and in fact they are complementary. On the one hand,
one can move down a level and study the properties of the components,
disregarding their mutual interconnection as a system. On the other hand,
one can disregard the detailed structure of the components, treating their
behavior only as contributing to that of a larger unit. It seems that both
these directions of analysis always coexist, either implicitly or explicitly,
because these descriptive levels are mutually interdependent for the ob-
server. We cannot conceive of components if there is no system from
which they are abstracted: and there cannot be a whole unless there are

constitutive elements.

10.7.2
It is interesting to consider whether one can have a measure for the
degree of wholeness or autonomy of a system. One can, of course,
always draw a distinction, make a mark, and get a “'system,” but the
result does not always seem to be equally a ““whole system,”" a **natural
entity,”” or a “‘coherent object™ or “‘concept.”” What is it that makes
some systems more coherent, more autonomous, more whole, than oth-
ers?
A first thing to notice is, that in the hierarchy of levels, “emergent’’
or “‘immanent’’ properties appear at some levels. For example, let us
consider music as a system oOr organization of notes (for the purpose of
thie mvamnle we do not attempt to reduce notes to any low

er-level
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distinctions). Then harmony only arises when we consider the simulta
neous or parallel sounding of notes, and melody only arises when :
consider the sequential sounding of notes. That is, harmony and melo\?dve
are emergent properties of a level of organization above that of the note}s/
thems'elvgs. Similarly, form can only emerge at a still higher level of
orgamzatnon, relating different melodic units to one another. These prog—
;c]ir:rzsr—c—hlzz;rln ,Orrr1610f1y, 'and harmony—.—are systems properties, arising from
: ganizations of notes into pieces of music; they are not
properties of notes (Goguen, 1977). It also appears that ‘‘life”” is an
emergent property of the biological hierarchy of levels: it is nowhere t
be found at the level of atoms and molecules, but it becomes clear at th0
level of cells through the autopoietic organization of molecules. Languag:
(C:/Ina?e seen as an emergent property gt a §till higher level of this hierarchy
urana, 1977). In general, organizational closure can be viewed as
prpwdmg the mechanism through which emergent properties of new units
arise, and thus as the ““hinges’ for the hierarchy of levels in natural
systems_. Thus, one point of view toward wholeness is that it co-
with interesting e¢mergent properties at some level. o
Anlo‘t‘her point of view toward wholeness, is that it can be measured b
the d([fz(-.ulry of reduction: Because it is very hard to reduce the be:havioy
of organisms to the behavior of molecules, we may say that organismsr
are whole sy§tems. Similarly, it is very difficult (if not impossible) to
reduce Fhe effects of melodies to the effects of notes. One must consid
propert'les of patterns of notes or molecules. o
A third point of view is that a system is whole to the extent that it
part's are tig'lztly interconnected, that is, to the degree that it is diffiCLll]i
to flpd relgtlve]y independent subsystems. This is clearly related to the
previous views. An interesting corollary of this view is that a system
Wfth a strongly hierarchical organization will be less whole than a syste
with a strongly heterarchical organization; that is, nets are more zvho?;
than trees. More precisely, given that the graph of connections of the
parts of a s'ys.tem has no isolated subsystems, the more treelike it is, the
less whole it is, while still being (presumably) a system. The extrer;l i
probably a pure linear structure, without any branching.at all °P
A fourth point of view is that a system seems more whole i.f it is mor
i'-omplex, that is, more difficult to reduce to descriptions as interconnec‘?
alé)cnsu?lft l(;;v;rl—level components. It. is necessary in this discussion to take
e de (Vt?gy modern) point of view that the more complex a
ptem 18 | t:‘:scrlhe, the more rja/.zd()m it is (Kolmogorov, 1968). Thus,
Constmeg 2; ew dglene§§ of a living syspem is, in everyday encounters,
o pired @ iunpr/e ictability. The more difficult it is to reduce a system
e fhgs Snput output control, the I.nore‘likely it is we will deem it
rand(; ‘ ense complete autonom}/ 1s logically equivalent to complete
mness. [Another example: a piece of music that is too complex,
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relative to our cultural expectations and inherent capacities, will sound
random, chaotic, perhaps meaningless, but it will also sound whole. Here
the extreme is white noise (Goguen, 1977).]

This viewpoint toward wholeness involves measurement relative to
some standard interpreting system, an observer-community. But given
such a standard, this viewpoint can be deduced from the preceding ones.
For surely, it it is difficult to describe a system, it will also be difficult
to reduce it to lower levels, and its parts will seem to be tightly inter-
connected. Quite possibly, its very complexity will appear as an emergent
property. As Atlan has recently remarked in a fundamental paper, when
randomness becomes ‘information’’ for a system depends strictly on the
observer's position (Atlan, 1978). Different cognitive viewpoints might
well be better able to process what now seems like a very complex
system, and thus see it as less whole. Once again, the relativity to
cognitive capacity appears.

10.7.3

These descriptive levels haven't been generally realized as complemen-
tary, largely because there is a difference between publicly announced
methodology and actual practice in most fields of research in modern
science. A reductionist attitude is strongly promoted, yet the analysis of
a system cannot begin without acknowledging a degree of coherence in
the system to be investigated: the analyst has to have an intuition that he
is actually dealing with a coherent phenomenon. Although science has
publicly taken a reductionist attitude, in practice both approaches have
always been active. It is not that one has to have a holistic view as
opposed to a reductionist view, or vice versa, but rather that the two
views of systems are complementary.

Similar conclusions apply to the understanding of autopoiesis in rela-
tion to allopoiesis, or to symbolic descriptions as opposed to causal.
Neither choosing one pole against the other nor treating them at the
same level seems adequate; rather they must be acknowledged as dis-
tinct. but interdependent cognitive perspectives of the observer-com-
munity.

There is a strong current in contemporary culture advocating auton-
omy, information (symbolic descriptions), and holism as some sort of
cure-all and as a radically “new’ dimension. This is often seen in dis=
cussions about environmental phenomena, human health, and manage-
ment. In this book we take a rather different view. We simply see
autonomy and control, causal and symbolic explanations, reductionism

and holism as complementary of “*cognitively adjoint” for the under-

standing of those systems in which we are interested. They are inter-
twined in any satisfactory description; each entails some loss relative t0
our cognitive preferences, as well as some gain.
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