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1 Lecture 1: Motivations for (Relativistic) Quan-
tum Field Theory

We assume that there is a ”Theory of Everything”, called ToE herein, which is
suspected to include a contained description of small and large scale forces in the
universe (e.g., strong nuclear, weak nuclear, electromagnetic, and gravitational
forces). Our classical observations fall into a low energy, large scale, decoherent
approximation of this ToE. The purpose of this collection of notes is to study
(effective) relativistic quantum field theory which is the low energy, large scale
approximation of the ToE, and we are not sure how many ”steps” there are
in between the two, but the relativistic quantum field theory is the closest we
currently come to a ToE. If we lower the energy and lengthen the scale of
our study, we land in a nonrelativistic quantum field theory. A quantum field
theory is then subject to decoherence, as we exist on the classical scale, and
we begin the development of a relativistic quantum field theory with a classical
field theory. In this sense, our purpose is to undo all of the approximations
that nature forces us to take when we run experiments, take measurements,
and devleop theoretical frameworks to describe observed phenomena.

Figure 1: Schematic of the study of field theories in physics.
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Mathematical Machinery of Relativistic QFT

For a quantum field theory to be relativistic it must be symmetric under the
Poincaré group transformations.
Let the four-vector (x0, x1, x2, x3) be the spacetime coordinates in an inertial
reference frame. Then in any other reference frame that an observer chooses,
the following condition is satisfied.
(Note: We adopt the Einstein summation notation, and repeated indices are
summed over, such that µ, ν, ρ, and σ below are summed from 0 to 3.)

ηµνdx
′µdx′ν = ηρσdx

ρdxσ (1)

Where we are using the Minkowski metric

ηµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2)

Any transformation satisfying the first equation, the relationship between the
coordinates of two reference frames, must be a linear transformation of the form,
denoted by the pair (Λ, a),

x′µ = Λµνx
ν + aµ (3)

Where Λµν is the 4x4 Lorentz transformation matrix that represents rotations,
and aµ is a constant four-vector that represents spatial translations.
Also note that the Lorentz transformation must satisfy the following condition,
shown in index and matrix notation.

ηµνΛµρΛ
ν
σ = ηρσ (4)

ΛT ηΛ = η (5)

These transformations (Λ, a) are the elements of the Poincaré group P4. Let’s
check the group conditions, using equation (??) for calculating the product of
two Poincaré transformations,

product (Λ, a) ◦ (Λ̄, ā) = (Λ̄Λ, Λ̄a+ ā)
identity (1, 0) ◦ (Λ, a) = (Λ, a)
inverse (Λ−1, a−1) ◦ (Λ, a) = (1, 0)

associativity
(
(Λ, a) ◦ (Λ̄, ā)

)
◦ ( ¯̄Λ, ¯̄a) = (Λ, a) ◦

(
(Λ̄, ā) ◦ ( ¯̄Λ, ¯̄a)

) (6)

In index notation, the total effect of the product of two Poincaré transfomations
is written as

x′µ = Λµνx
ν + aµ (7)

x′′µ = Λ̄µρx
′ρ + āµ (8)
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Quantum mechanical symmetries are representated by unitary or anti-unitary
linear operators as elements of a separable Hilbert space H such that for each
Poincaré transformation (Λ, a) ∈ P4, there exists a unitary transformation

U(Λ, a) : H →H (9)

The identity unitary transformation, and the product of any two unitary trans-
formations of elements of the Poincaré group are physically indistinguishable
from each other up to a phase factor eiφ, where φ ∈ R

U(Λ̄, ā)U(Λ, a) = eiφ((Λ,a),(Λ̄,ā))U(Λ̄Λ, Λ̄a+ ā) (10)

U(1, 0) = eiφ1. (11)

The family of transformations U(Λ, a) that satisfy these equations is called the
projective unitary representations of P4, and is precisely what we need to es-
tablish a relativistic quantum field theory that includes translations, rotations,
and Lorentz boosts as its transformations.

Consider the time translation subgroup of the Poincaré group

{(Λ = 1, a = (t, 0, 0, 0)) : t ∈ R} ⊂ P4 (12)

And let U be a unitary representation of P4. Then V (t) = U(1, (t, 0, 0, 0))
is a one-parameter family of unitary transformations, which is a group homo-
morphism, such that V (s)V (t) = V (s + t), and is called a propagator, and is
a solution to the Schrödinger equation, assuming the Hamiltonian Ĥ is self-
adjoint and is stable, such that there at most a finite number of, preferrably
zero, negative eigenvalues

dV (t)

dt
= iĤV (t). (13)

So, having a unitary representation is equivalent to solving the time-dependent
Schrödinger equation, and we require that U(Λ, a) is positive energy, such that
the spectrum of eigenvalues of Ĥ is positive spec(Ĥ) ⊂ R+, and stable. Oth-
erwise, the system may be unstable and plunge to more and more negative
eigenvalues.

All single-particle unitary representations of P4 have been classified by Wigner,
and are labelled by their mass m (invariant under Poincaré and Lorentz trans-
formations) and their helicity/spin s. The bad news is that the universe is
comprised of many particles, creating tension between locality and interactions,
rendering thorough study of single-particle representations pointless. Even for
a single particle, as we increase locality, self-interaction increases, and new par-
ticles are created via tunnelling.
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Why is Obtaining a Relativistic Quantum Field Theory
Hard?

The reason that constructing a relativistic QFT is considered so difficult is
because there are no nontrivial, only trivial, finite-dimensional unitary repre-
sentations of the Poincaré group P4. The only nontrivial representations of
P4 are infinite-dimensional, and are not easy to work with when constructing
a unitary representation. Consider this in contrast to the, more easily con-
structed, special orthogonal group of three-dimensional rotations SO(3) with
unitary representations

U = ei(σxĴx+σy Ĵy+σz Ĵz). (14)

Where Ĵα are the angular momentum operators. The reason SO(3) is easier to
work with and construct a unitary representation is because SO(3) a compact
group, while P4 is a non-compact group.
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2 Lecture 2: Introduction to Classical Field The-
ory

To build a relativistic QFT, we start with an effective model from a classical
field theory, and make an ”educated guess” to quantize the classical field theory.
The desired relativistic QFT has nothing to do a priori with the classical field
theory. After quantization, the ”educated guess”, we take the limits of low
energy, large scale, and decoherence, and check that we get back the classical
field theory we started with, demonstrating whether the chosen quantization is
correct or incorrect... enough, to some level of approximation.

Fields

A field is a quantity (e.g., density, spin, charge) tht is defined at every point on a
manifoldM. Note that a rigorous definition of a field requires the introduction
of vector bundles, of which we will not go so far.
We work on the Minkowski spacetime manifold M = M1,3 = R1 × R3, with
the field often taken to be two-times differentiable such that φ ∈ C2(M, ρ) and
defined as a function from the manifold to some target space ρ

φ :M→ ρ (15)

Some target spaces ρ, their associated field type, and example applications and
models include

• ρ = R; scalar field; charge density, magnetization density, Higgs boson

• ρ = Rn; vector field; electromagnetic field (actually a gauge field), pions

Figure 2: Sketch of the vector field ρ = Rn over the Minkowski space M1,1.

• ρ = S2; vector field on the surface of a sphere; σ-model, quantum
magnets

• ρ = S1 × S1; vector field on a torus; Chern-Simons theory, Lie groups

Note that when our target space is the N -dimensional real vector field RN , the
vector field is described as a list N scalar fields {φa(x)}Na=1, where x is the
coordinate four-vector.
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Dynamics of Classical Fields

We restrict this to discussion to classical dynamics generated by Lagrangians,
obtained via the variational principle applied to th action functional, where
the system of scalar fields {φa(x)}Na=1, and a labels the particle type (e.g.,
charge). The action functional S contains a function of the Langrangian density
L = L (φa, ∂µφa). The Lagrangian density is actually a function of higher order
derivatives of the fields φa, but we make the assumption and approximation of
first order derivatives, based on observation

S(Ω) =

∫
Ω

d4x L (φa, ∂µφa). (16)

Where d4x = dx0dx1dx2dx3 and Ω ⊂ M1,3, as a measurable set, is a region in
(3 + 1)-dimensional spacetime. Typically, we consider the spacetime region as
the entire Minkowski space Ω =M1,3.

To extract the equations of motion, we suppose that the action S is stationary
under infinitesimal variations of the component scalar fields φa(x) → φa(x) +
δφa(x), which vanish on the spacetime region boundary, such that δφa(x) = 0
on ∂Ω.

Varying the action functional, we obtain N Euler-Lagrange equations of motion

δS(Ω) =

∫
Ω

d4x

(
∂L

∂φa
δφa +

∂L

∂(∂µφa)
δ(∂µφa)

)
(17)

0 =

∫
Ω

d4x

(
∂L

∂φa
δφa −

∂

∂xµ

(
∂L

∂(∂µφa)

))
δφa +

∫
Ω

d4x
∂

∂xµ

(
∂L

∂(∂µφa)
δφa

)
(18)

0 =

∫
Ω

d4x

(
∂L

∂φa
δφa −

∂

∂xµ

(
∂L

∂(∂µφa)

))
δφa + ∂µMµ. (19)

The last term is a surface term which vanishes on the boundary, since we first
demanded that δφa = 0 vanishes on the boundary, such that ∂µMµ = 0 on ∂Ω.

Since S(Ω) is stationary with respect to all variations of the fields δφa and ad-
missable spacetime regions Ω, the integrand of the remaining term must also
vanish ∀ a = 1, 2, ... , N , and we obtain the N Euler-Lagrange equations of mo-
tion

− ∂L

∂φa
+

∂

∂xµ

(
∂L

∂(∂µφa)

)
= 0. (20)

So, with equations of motion in hand, gotten by whatever means, they can be
encoded in the Langrangian density, and then recovered via the Euler-Lagrange
equations of motion. This allows us to discover equations of motion with cer-
tain properties, such as being symmetric under the Poincaré transformations, by
designing Lagrangian densities, which are scalars under these symmetry trans-
formations, apply Euler-Lagrange ”recipe”, and get the equations of motion,
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which are guaranteed to be symmetric under the chosen transformations. This
benefit of the action principle makes it easy to design equations of motion with
certain symmetries.

Example: Klein-Gordon field

Consider the Langrangian density

L =
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
m2φ2 (21)

=
1

2
(∂µφ)2 − 1

2
m2φ2 (22)

Where φ̇ = ∂0φ is the time derivative of the field, and (∇φ)j = ∂jφ for j = 1, 2, 3
are the x, y, z spatial components of the field derivatives.

Apply the Euler-Lagrange equations of motion to obtain the dynamics of the
Klein-Gordon field

−∂L

∂φa
+

∂

∂xµ

(
∂L

∂(∂µφa)

)
= 0 (23)

∂

∂xµ
(∂µφ)− (−m2φ) = 0 (24)

∂µ∂
µφ+m2φ = 0 (25)

�φ+m2φ = 0 (26)

Hamiltonian formalism

A better way to guess/build a quantum theory, with the correct calssical limit
determined by the Langrangian density, is the Hamiltonian formalism, where
we calculate conjugate variables and impose canonical (algebraic) commutation
relations.

Suppose that φa(x) is a component field’s canonical position. Then define the
conjugate momentum density for each field to be

πa(x) =
∂L

∂φ̇a
. (27)

In order to computationally study a field, we discretize the space into a regular
lattice with spacing ε between each lattice site, since representing a continuous
object on a computer would require an infinite amount of data. Discretization
yields generalized coordinates, defined by the field itself, of the form qaj (t) =
φa(t, xj), j ∈ Z. For example, consider the 1 + 1-dimensional Minkowski space
M1,1
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Figure 3: Schematic of field discretization.

To discretize the action functional and apply the variational principle, replace
the partial derivatives ∂µφa(t, x), since it is a continuous operation, by applying
Taylor’s theorem to approximate the spatial component of the field as a finite
difference, where ε should be made as small as possible such that the error
approximation is minimized

∂xφa(t, xj) ∼=
φa(t, xj + ε)− φa(t, xj)

ε
=
qaj+1 − qaj

ε
. (28)

Leave the temporal component to be continuous

∂tφa(t, xj) ∼= q̇aj . (29)

To obtain the Lagrangian, integrate the density over space, such that only the
time dependence is left∫

d3x L (φa, ∂µφa) = L(qaj (t), q̇aj (t)) = L(t). (30)

The discrete approximation of the Lagrangian is written as

L(t) ∼=
∑
j

δxjL (φa(t, xj), ∂µφa(t, xj)). (31)

And the discrete conjugate momenta

paj (t) =
∂L

∂q̇aj
=
∑
j

δxj
∂L

∂q̇aj
=
∑
j

δxjπ
a(t, xj). (32)

Simple Example

As a simple example, consider the Lagrangian density

L =
1

2
(∂µφ∂

µφ) (33)

=
1

2
(∂tφ)2 − 1

2
(∂xφ)2. (34)
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(RECHECK) Integrate over space d3x to obtain the Lagrangian, and discretize
using the rules defined above

L(t) =
1

2

∞∑
j=−∞

(
ε

(
dqj
dt

)2

− (qj+1 − qj)
ε

)
. (35)

Where δxj = ε and pj(t) = ε
dqj
dt = π(t, xj)δxj .

As ε→ 0, qj(t)→ φ(t, x) and pj(t)→ ˙φ(t, x)

Hamiltonian Density

For the discrete approximation, the Hamiltonian H, obtained by integrating the
Hamiltonian density H of space d3x, is written as

H =
∑
j

paj q̇
a
j − L =

∑
j

δxj(πa(t, xj)φ̇a(t, xj)− Lj) (36)

In the limit as ε→ 0, the Hamiltonian density is

H (t, x) = πa(t, x)φ̇a(t, x)−L (φa(t, x), ∂µφa(t, x)) (37)

The Hamiltonian density for the Klein-Gordon field is, dropping the field index
and spacetime dependencies from the expression,

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 (38)
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3 Lecture 3: Symmetries in Classical Field The-
ory

Suppose that L (φa, ∂µφa) is the Lagrangian density for some set of fields
{φa(x)}Na=1. Recall that the Lagrangian density is a compact, encrypted of
writing the equations of motion of a system, and the Euler-Lagrange equations
and the principle of least action are used to unpack/decrypt the equations of
motion.

Now consider an infinitesimal continuous transformation of the fields

φ′a(x) = φa(x) +Xa(φa) (39)

This produces an infinitesimal symmetry in the equations of motion when they
are left invariant under the principle of least action

L → L (φ′a, ∂µφ
′
a) = L (φa, ∂µφa) + ∂µF

µ (40)

& S[φa] =

∫
d4xL =

∫
d4x(L + ∂µF

µ) (41)

Noether’s Theorem

Every continuous symmetry of a Lagrangian implies the existence of a conserved
current jµ(x).

Proof: Let Xa[φa] = δφa be an arbitrary, infinitesimal change in each field,
such that the infinitesimal change in the Lagrangian density is

δL (φa, ∂µφa) = L (φa + δφa, ∂µ(φa + δφa))−L (φa, δµφa) (42)

∼=
∂L

∂φa
δφa +

∂L

∂(∂µφa)
δ(∂µφa) (43)

=

(
∂L

∂φa
− ∂µ

(
∂L

∂(∂µφa)

))
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)
(44)

δL (φa, ∂µφa) = ∂µ

(
∂L

∂(∂µφa)
δφa

)
(45)

Where in line (14), we have kept only first order terms O(δφa), and have used
the Taylor expansion and added zero to get to line (15). To obtain line (16),
note that the first term in line (15) is equal to zero, since φa(x) obey the Euler-
Lagrange equations.

As defined above, for an infinitesimal transformation, call δφa = Xa[φa] and for
an infinitesimal symmetry, call δL = ∂µF

µ.
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∂µF
µ = ∂µ

(
∂L

∂(∂µφa)
Xa[φa]

)
(46)

0 = ∂µ

(
∂L

∂(∂µφa)
Xa[φa]− Fµ

)
(47)

Call the conserved quantity the conserved current

jµ(x) =

(
∂L

∂(∂µφa)
Xa[φa]− Fµ

)
. (48)

Now, a conserved current implies the existence of a conserved charge. For any
measurable region in our Minkowski space V ⊂ M, define the integral of the
time-like component of the current as

QV =

∫
V

d3x j0(x) (49)

Take V = R3, and assume that the current vanishes at infinity, such that j → 0
on the boundary ∂V , and take the time derivative

dQR3

dt
=

∫
R3

d3x ∂0j
0(x) (50)

= −
∫
R3

d3x ∂kj
k (51)

= −
∫
∂R3

jds (52)

dQR3

dt
= 0 (53)

Example

Consider an active transformation of spacetime coordinates xµ → xµ − εµ.
Then each field transforms as

φ′a(xµ) = φa(xµ + εµ) (54)

= φa(xµ) + εν∂νφa(xµ) (55)

And the Lagrangian density transforms as, yielding 4 × 4 = 16 equations from
summing over µ and ν

L (x′µ) = L (xµ + εµ) (56)

= L (xµ) + εν∂νL (xµ) (57)

Where the infinitesimal field transformation is Xa[φa] = εν∂νφa(xµ), and the
infinitesimal symmetry of the Lagrangian density is ∂µF

µ = εµ∂µL (xµ)
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Consider the infinitesimal element ε with basis vector entries [ν̂]µν = δµν

εµ = εν̂µ = ε{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. (58)

Apply Noether’s theorem to each of the 4 symmetry terms εν̂µ, yielding 16
total terms that we assign as the elements Tµν of the energy-momentum or
stress-energy tensor

Tµν = jµν =
∂L

∂(∂µφa)
∂νφa − δµνL . (59)

Note that each of the νth columns of the energy-momentum tensor correspond
to one of the four conserved currents and translation in each of the νth directions

∂µT
µ
ν = 0, ∀ ν. (60)

In a closed system, the corresponding conserved charges, from the columns
(conserved currents) of the energy-momentum tensor, are the total energy and
the momentum in each of the three spatial directions

E =

∫
d3x T 00 (61)

pj =

∫
d3x T 0j . (62)

Example of the Example: Klein-Gordon Field

Consider the Klein-Gordon Lagrangian density L = 1
2∂µφ∂

µφ − 1
2m

2φ2. The
energy-momentum tensor has elements of the form

Tµν = ∂µφ∂νφ− δµνL (63)

Tµν = ηνν
′
Tµν′ = ∂µφ∂νφ− ηµνL . (64)

The corresponding conserved charges are

E =

∫
d3x H (x) =

∫
d3x (∂0φ∂0φ− 1

2
∂0φ∂0φ+

1

2
m2φ2) (65)

pj =

∫
d3x φ̇∂jφ. (66)

How To Apply Noether’s Theorem

1. Identify the continuous symmetry.

2. Calculate the change in the Lagrangian density.

3. Calculate the change in each of the fields.

4. Work out the conserved currents and charges.

14



Infinitesimal Lorentz Transformations

Consider the transformation xµ → Λµνx
ν , where Λµν = δµν + ωµν , and ωµν

is infinitesimal. Next, recall the following property of the group of Lorentz
transformations, restricting the possible values for ω

η = ΛT ηΛ (67)

ηµν = (δµσ + ωµσ)(δντ + ωντ )ηστ (68)

0 =O(ω) ω
µν + ωνµ (69)

This is a linear equation in ω, since we have kept only up to first order terms
in ω, and tells us that ω is an antisymmetric, infinitesimal generator of Lorentz
transformations with six independent variables which define six continuous sym-
metries and six conserved currents and charges.

ω =


0 −α −β −γ
α 0 −δ −ε
β δ 0 −κ
γ ε κ 0

 (70)

The action of this infinitesimal Lorentz transformation on the fields is

φa(x)→ φ′a(x) = φa(Λ−1x) (71)

= φa((δ − ω)x) (72)

= φa(xµ − ωµνxν) (73)

=O(ω) φa(x)− ωµνxν∂µφa(x) (74)

Showing that the symmetry is defined by the infinitesimals

δφa = −ωµνxν∂µφa (75)

& δL = −ωµνxν∂µL = −∂µ(ωµνx
νL ) (76)

& jµω =
∂L

∂(∂µφa)
ωρνx

ν∂ρφa + ωµνx
νL . (77)

(CHECK how j to J ) Applying Noether’s theorem tells us that the six inde-
pendent conserved currents ∂µ(J µ)ρσ = 0, and conserved charges, are of the
form

(J µ)ρσ = xρTµσ − xσTµρ (78)

Qjk =

∫
d3x (xjT 0k − xkT 0j) (79)

Q0j =

∫
d3x (x0T 0j − xjT 00) (80)

Call Qjk the generators of rotations, and Q0j the generators of boosts of the
Lorentz transformations.
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Generators

Let f and g be maps from phase space to the real numbers

f, g : RN × RN → R. (81)

Define the Poisson bracket with the pairs of canonical coordinates (qj , pj)

{f, g} =

N∑
j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
(82)

{f,H} =
df

dt
(83)

The field theory version of the Posson bracket is defined with the canonical
coordinate pairs (φ(x), π(x))

{F,G} =

∫
d3x

(
δF

δφ(x)

δG

δπ(x)
− δF

δπ(x)

δG

δφ(x)

)
(84)

{f,Qρσ} =
∂f

∂sρσ
(85)

Where the Poisson bracket of f and the conserved charges Q generate the cor-
responding symmetry transformations. Conserved cahrges also obey the Lie
algebra obeyed by the Poincaré group.

Standard Dogma of Quantization

Basically, put hats on things

• Function f on phase space → linear operator f̂ (observable) on Hilbert
space

• Poisson bracket {f, g} = h→ commutator [f̂ , ĝ] = iĥ

• Conserved charge Qρσ → conserved charge operator Q̂ρσ

Where the conserved charge operators generate the Lorentz transformations on
Hilbert space

dÛ

ds
= i[Û , Q̂ρσ]ωρσ (86)
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4 Lecture 4: Field Quantization

More than one quantum field theory can have the same classical field theory as
an effective model, making field quantization not a well-posed problem. Devel-
oping a quantum field theory is therefore built on educated guesses.

Canonical quantization of particles

The standard approach of canonical quantization is to begin with a classical
theory and suppose n classical degrees of freedom, which are used to measure
the canonical coordinate pairs, position qj and momentum pj , for each degree
of freedom, such that the Poisson bracket is defined by {qj , pk} = δjk. The total
energy of the of the system is measured by the classical Hamiltonian, defined
by

H =

n∑
j=1

p2
j

2m
+
m

2

n∑
j,k=1

qj [Q]jkqk (87)

Where Q is an n× n symmetric, positive matrix.

For example, consider the quantum harmonic oscillator, and take the naive ap-
proach by basically putting hats on everything. This ends up working for field
quantization, and yields a unitary representation of the Poincaré group.

• Canonical coordinates: (qj , pj)
→ Canonical coordinate operators : (q̂j , p̂j)

• Poisson bracket: {qj , pk} = δjk
→ Commutator: [q̂j , p̂k] = iδjk

• Hamiltonian: H, as defined above

→ Hamiltonian operator : Ĥ =
∑n
j=1

p̂2j
2m + m

2

∑n
j,k=1 q̂j [Q]jkq̂k

To diagonalize the Hamiltonian operator, first note that since Q is a symmetric,
positive n×n matrix, there exists an orthogonal matrix O (s.t., OTO = I), such
that OQOT = D, where D is a diagonal matrix, where we call the diagonal
elements {ω2

i }ni=1

Now, transform the canonical coordinates, using the orthogonal matrix, such

17



that the correct commutation relation is still obeyed

q̂j =

n∑
k=1

[O]jkq̂
′
k (88)

p̂j =

n∑
k=1

[O]jkp̂
′
k (89)

iδjk = [q̂′j , p̂
′
k] (90)

Using the facts that OT = O−1 and OQOT = D, the Hamiltonian becomes
diagonalized

Ĥ =

n∑
j=1

p̂′
2

j

2m
+
m

2

n∑
j,k,l,m=1

q̂′l[O
T ]jl[Q]jk[OT ]kmq̂′m (91)

Ĥ =

n∑
j=1

p̂′
2

j

2m
+

1

2

n∑
k=1

ω2
kq̂
′2
k (92)

Ĥ =
1

2

n∑
k=1

ωk(â†kâk +
1

2
) (93)

Where the annihilation and creation ladder operators that diagonalize the quan-
tum harmonic oscillator Hamiltonian are defined as

âk =

√
mωk

2
(q̂′k +

i

mωk
p̂′k) (94)

â†k =

√
mωk

2
(q̂′k −

i

mωk
p̂′k) (95)

Canonical Quantization of Fields

To quantize the Klein-Gordon field, we follow the same seemingly naive ap-
proach of putting hats on everything. In this example fo quantizing a field, the
continuous variable x is used, in contrast to the discrete labels j in the previous
example of the quantum harmonic oscillator

• Canonical coordinates: (φ(x), π(x))

→ Canonical coordinate operators : (φ̂(x), π̂(x))

• Poisson bracket: {φ(x), π(y)} = δ(3)(x− y)

→ Commutator: [φ̂(x), π̂(y)] = iδ(3)(x− y)

Note that this is the equal time Poisson bracket, such that (x− y) is
the spatial three-vector.
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Also note that this commutator is strange, as it is comprised of ”two
self-adjoint operators and something’s that not even a function”

• Hamiltonian: HKG = 1
2

∫
d3x

(
π2(x) + (∇φ(x))2 + 1

2m
2φ2(x)

)
→ Hamiltonian operator : ĤKG = 1

2

∫
d3x

(
π̂2(x) + (∇φ̂(x))2 + 1

2m
2φ̂2(x)

)
Essentially, replace discrete sums with continuous integrals, by switching to a
continuous label j → x and a continuous dynamical variable qj → qx = φ(x).
Solving the quantum Hamiltonian, by analogy of the canonical quantization of
particles, should be as simple as creating the analog of the Q matrix and its
diagonalization.

Replacing sums by integrals allows the full diagonalization of Q, and, therefore,
the full diagonalization of the Hamiltonian Ĥ = ĤKG, but this does not yet
yield a unitary representation of the Poincaré group or a valid relativistic quan-
tum field theory. Diagonalizing the Hamiltonian only quantizes a one-parameter
subgroup of the Poincaré group. The conserved currents, charges, and operators
obeying the correct Lie algebra are still needed for a relativistic quantum field
theory.

Diagonalization of the quantum field theory

The diagonalization of a field theory begins with emergence of the Fourier trans-
form. Replace sums with integrals, and, since the matrix elements are described
by two numbers, let’s define a continuous function in two variables K(x, y)

q̂j =
∑
k

[O]jkq̂
′
k → φ̂(x) =

∫
d3y K(x, y)φ̂(y) (96)

Where K(x, y) is the kernel of the Fourier transform.

Using the Fourier transform is motivated by certain features of symmetric ma-
trices. Consider the circulant matrix, a type of Toeplitz matrix where each
successive column is a cyclic permutation of the previous column, initialized by
the first column vector, and has the form as an n× n matrix

c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 . . . c1 c0

 . (97)
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These matrices are diagonalized via the discrete Fourier transform, which is an
n× n unitary matrix, though not orthogonal and may have complex entries

U =
1√
n



1 1 1 . . .
1 µ µ2 . . .

1 µ2 µ4
...

...
... µjk

. . . µnn

 (98)

Where µ = e
2πi
n is the nth roots of unity. The elements of the discrete Fourier

transform, therefore, have the form 1√
n
e

2πijk
n . Compare this to the continuous

Fourier transform kernel function K(x, y) = 1
2π e

ixy.

For transformations between position and momentum space, make the guess
that the Fourier transform that will diagonalize our quantized Klein-Gordon
Hamiltonian has the form

φ̂(x) =

∫
d3p

(2π)3
eip·xφ̂p(p). (99)

Where φ̂p(p) is the momentum space wavefunction, and is not Hermitian, such

that φ̂p(p)
† = φ̂p(−p). To check if the guess is correct, apply ĤKG to the trans-

form defined above, and observe whether it is diagonalized or not.

As in the discrete case of diagonalization, we construct ladder operators

φ̂(x) =

∫
d3p

(2π)3

1√
2ωp

(
âpe

ip·x + â†pe
−ip·x) (100)

π̂(x) = −i
∫

d3p

(2π)3

√
ωp
2

(
âpe

ip·x − â†pe−ip·x
)

(101)

ωp =
√
|p|2 +m2 (102)

Check the commutation relation

[φ̂(x), π̂(x′)] =
−i
2

∫
d3pd3p′

(2π)6

√
ωp′

ωp

(
[â†−p, âp′ ]− [âp, â

†
−p′ ]

)
ei(p·x+p′·y) (103)(

[âp, â
†
p′ ] = (2π)3δ(3)(p− p′) · I

)
(104)

= iδ(3)(x− y) (105)

Making this substitution, the quantum Klein-Gordon Hamiltonian is diagonal-
ized

20



ĤKG =

∫
d3x

∫
d3pd3p′

(2π)6
ei(p+p

′)·x(
−1

4

√
ωpωp′(âp − â†−p)(âp′ − â

†
−p′) (106)

+
−pp′ +m2

4
√
ωpωp′

(âp + â†−p)(âp′ + â†−p′)) (107)

=

∫
d3p

(2π)3
ωp(â

†
pâp +

1

2
[âp, â

†
p]) (108)

=

∫
d3p

(2π)3
ωp(â

†
pâp +

1

2
δpp · I) (109)

∼=
∫

d3p

(2π)3
ωpâ

†
pâp (110)

Where the infinite absolute energy shift is tossed to get the last line, since we
only measure energy differences, and ĤKG is diagonalized!
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5 Lecture 5: Scalar Quantum Field Theory

By analogy to the classical Klein-Gordon equation and Hamiltonian, a model
for the (equal time, t = 0) quantum Klein-Gordon Hamiltonian was constructed
and diagonalized, via (continuous) Fourier transform and ladder operators,

ĤKG =
1

2

∫
d3x π̂2(x) + (∇φ̂(x))2 +m2φ̂2(x) (111)

ĤKG =

∫
d3p

(2π)3
ωpâ

†
pâp (112)

Where the zeroth, time, component of the momentum 4-vector p0 = ωp =√
|p|2 +m2 depends on the spatial 3-vector p and the constant m2.

This yields a representation of a one parameter subgroup of the Poincaré group,

namely U((t, 0, 0, 0)) = e−itĤKG , but a true relativistic quantum field theory
requires the full (projective) unitary representation of the Poincaré group, in-
cluding generators for all possible transformation: 10 Lorentz + 4 translation
= 14 total transformations in the Poincaré group.

To quantize, put hats on the conserved charges identified by Noether’s theorem:
Qα → Q̂α. First, consider the generators of spatial translations, namely mo-
mentum. Recall that the classical conserved current T 0j gives these, which is
quantized: pj → p̂j .
Recall the classical energy-momentum tensor for the Klein-Gordon field

Tµν |KG = ∂µφ∂νφ− δµν(∂µφ∂µφ−
1

2
m2φ2) (113)

From this, quantize and calculate the conserved charge for temporal translations,
namely the Hamiltonian, and conserved charges for spatial translations, namely
linear momentum.

ĤKG =

∫
d3x T̂ 00 =

∫
d3p

(2π)3
ωpâ

†
pâp (114)

p̂j =

∫
d3x T̂ 0j =

∫
d3x

ˆ̇
φ∂j φ̂ =

∫
d3x π̂∂j φ̂p̂

j =

∫
d3p

(2π)3
pj â†pâp (115)

Note that there are several choices for the ordering of π̂ and φ̂ in the expression
of p̂j matters, and here is written the one that works.

Now check that the four-vector obeys the commuation relations, using the di-

agonalized momenta p̂j =
∫

d3p
(2π)3 p

j â†pâp

{Qα, Qβ}PB = f γ
αβQγ → [Q̂α, Q̂β ] = if γ

αβQγ (116)

{pµ, pν}PB = 0→ [p̂µ, p̂ν ] = 0 (117)
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This confirms a projective unitary representation of the translation subgroup
of the Poincaré group, and now construct the explicit Hilbert space as a Fock
space, since the operators are quantized and diagonalized via ladder operators.

To construct a Fock space, begin by defining the vacuum state, highest weight
vector in the language of representation theory, |Ω〉 such that the annihilation
operator will completely obliterate it: âp |Ω〉 = 0, ∀ p, where p = (ωp, p).

The Hilbert space would then be generated via all finite linear combinations
of vectors of the form |p1p2 . . .pn〉 = â†p1

â†p2
. . . â†pn |Ω〉, but there is a tech-

nical issue of the n-dimensional momentum state vectors actually being im-
proper vectors that are not normalizable, such that the scalar product needed
to finish the defintion of the Hilbert space will always blow up to infinity, since
〈p|q〉 = (2π)3δ(3)(p − q). These states are also not preparable by experiment,
since the state vector |p1 p2 . . .pn〉 represents n delta functions in position-
momentum space.

To create a normalizable state that can be used to define the Hilbert space,
”smear out” the momentum states by defining a smooth (L2) function ψ, which
must be Lorentz invariant, though the invariance it is not obvious

|ψ〉 =

∫
d3p

(2π)3
ψ(p) |p〉 =

∫
d3p

(2π)3
ψ(p)â†p |Ω〉 . (118)

Now, introduce a method to normalize these improper vectors to a new set of
improper vectors that are manifestly, more obviously, Lorentz invariant, and
offer a nice parameterization to make many calculations easier.

Consider the projection operator onto a single particle state, and note that the
integrand and the integral (volume element) are both separately not invariant

Isingle =

∫
d3p

(2π)3
|p〉 〈p| . (119)

Enter a reference frame where this state is invariant by multiplying by one

Isingle =

∫
d3p

(2π)3X(p)
X(p) |p〉 〈p| . (120)

Where X(p) is a mystery factor to make the integral and integrand invariant.

Claim: X(p) =
2ωp

(2π)3 , where p here must be the momentum 4-vector, since we

are using the zeroth, or time, component p0 = ωp =
√
|p|2 +m2.

Proof:

First, observe that
∫
d3p is not Poincaré invariant, but

∫
d4p is, such that∫

d4p =
∫
d4p′, where p′µ = Λµνp

ν + aµ is a Poincaré transformation, and
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Λµν is the Jacobian of the transformation, and det(Λ) = ±1, ∀Λ unitary trans-
formation.

Now notice that pµpµ = const. = m2 (4-vector length invariant), whose solution
is the dispersion relation for a single relativistic particle, and has two branches
p0 = ωp = ±

√
|p|2 +m2, where |p| is the norm of the momentum (spatial)

3-vector.

Restrict to the positive upper branch, and consider the Poincaré invariant quan-
tity ∫

d4p δ(p2
0 − |p|2 −m2)|p0>0 =

∫
d3p

2p0

|p0=ωp . (121)

Therefore, to make the single particle state projection operator from above
Poncaré invariant, compare terms in the line above to the ”mystery factor” ex-
pression, proving that X(p) =

2ωp
(2π)3 .

Thus, the ”delta normalization” of 3-vectors is defined via

2ωpδ
(3)(p− q). (122)

And the renormalized, Lorentz invariant momentum 4-vector is built as

|p〉 =
√

2ωp |p〉 =
√

2ωpâ
†
p |Ω〉 . (123)

And the Lorentz invariant four-length comes out to be

〈p|q〉 = 2(2π)3ωpδ
(3)(p− q). (124)

Now, to express the operators in terms of the Fock vector space we build on
top of the vectors |p〉, and determine the action of the generator of spacetime
translations, the 4-momentum operator, p̂µ on the Hilbert space of momentum
states (improper vectors) |p1 p2 . . .pn〉.

This requires some commutation relations with the ladder operator âp in the
following lemma.

Lemma: [ĤKG, âp] = −ωpâp and [p̂j , âp] = pj âp.

Next follows the corollary, demonstrating that the operator p̂µ is diagonalized
in this Hilbert space basis, such that the 4-momentum operator annihilates the
vacuum state: p̂µ |Ω〉 = 0.

Corollary: p̂µ |p1p2 . . .pn〉 = (
∑n
j=1 p

µ
j ) |p1p2 . . .pn〉.
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Lorentz Invariance in the Heisenberg Picture

So, this operator allows unitary quantum spacetime translations, in the Schrödinger
picture, via the exponentiated Hermitian operator quantity U(a) = e−iaµp̂

µ

.

Now, to manifest any symmetries that may have not been shown in the Schrödinger
picture, explore Lorentz invariance in the Heisenberg picture, which is also later
helpful in perturbation theory. Real space calculations, at a specific spacetime
location (e.g., (t,x)) are also much easier in the Heisenberg picture than in the
”spread-out” Fourier transformed Schrödinger picture.

To enter the Heisenberg picture, where time is explicitly included, an opera-
tor O is unitarily transformed, and its time evolution is determined via the
Hamiltonian in the Heisenberg equation of motion

OH = eiĤtOe−iĤt (125)

dOH
dt

= i[Ĥ,OH ]. (126)

In the Heisenberg picture, the commutation relations for the canonical position
and momentum operators become

[φ̂H(t, x), φ̂H(t, y)] = [π̂H(t, x), π̂H(t, y)] = 0 (127)

[φ̂H(t, x), π̂H(t, y)] = iδ(3)(x− y). (128)

Evolve the canonical position and momentum operators in time via the (spatially
localized) Heisenberg equation of motion

dφ̂(t, x)

dt
= i[ĤKG, φ̂(t, x)] = π̂(t, x) (129)

dπ̂(t, x)

dt
= i[ĤKG, π̂(t, x)] = ∇2φ̂(t, x) +m2φ̂(t, x). (130)

Where the second equality is gotten by using integration-by-parts. Substitute
the first equality for π̂(t, x) into the second equality, and combine the second
derivatives of space and time, to show that the canonical field position operator
obeys the Klein-Gordon equation

(∂µ∂µ +m2)φ̂(t, x) = 0. (131)

This completes the development of the unitary representation of spacetime
translations. Rotations and boosts are yet to be integrated into the unitary
representation of the Poincaré group.
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6 Lecture 6: Causality in Scalar QFT

Thus far, we have diagonalized the Klein-Gordon Hamiltonian

ĤKG =
1

2

∫
d3x

(
π̂2(x) + (∇φ̂(x))2 +m2φ̂2(x)

)
=

∫
d3p

(2π)3
â†pâp (132)

And used this to construct the unitary operator that allows us to study the
dynamics of Klein-Gordon’s solution to Schrödinger’s equation in the Heisenberg
picture

Û = e−iĤKGt. (133)

We found the spatial solutions φ̂(x), in the Schrödinger picture, for the Klein-
Gordon equation, to be the position field operators

φ̂(x) =

∫
d3p

(2π)3

1√
2ωp

(
âpe

ip·x + â†pe
−ip·x) (134)

Notation: The spatial 3-vectors of position x and momentum p are no longer
bold-faced, and the spacetime 4-vectors will be bold-faced, such that

x = (x0, x) = (t, x) = (x0, x1, x2, x3) (135)

p = (p0, p) = (ωp, p) = (x0, x1, x2, x3). (136)

These solutions are represented in the Heisenberg picture via

φ̂(t, x) = Û†φ̂(x)Û = eiĤKGtφ̂(x)e−iĤKGt. (137)

We still need to complete the (projective) unitary representation of the Poincaré
group, including translations, boosts, and rotations, since we are doing relativis-
tic quantum field theory.

The next step here is to check that φ̂(t, x) respects causality, such that if two
spacetime events are space-like separated, then they have no influence on each
other. Note that if the two spacetime events are time-like, there may be influ-
ence.

Recall the commutation relation of the Hamiltonian (dropping subscript ”KG”)
and the ladder operator

[Ĥ, âp] = −ωpâp =⇒ eiĤtâpe
−iĤt = e−iωptâp. (138)

Substituting φ̂(x) into the Heisenberg picture, and using the above commutation
relation, we have the field oeprator in the Heisenberg picture

φ̂(t, x) =

∫
d3p

(2π)3

1√
2ωp

(
âpe

ip·x + â†pe
−ip·x) (139)
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Consider the delocalized (”smeared out”) field operator φ̂(t, x) as an observable
that samples the field at a localized spacetime location x = (t, x). The question
is whether this interpretation respects causality.

Consider a (projective) measurement event at (t, x) of the quantum field φ̂(t, x).
This disturbance of the field should fly out at the speed of light along its space-
time light cone. The fact is that measuring the field causes an instantaneous
disturbance everywhere, but relativity is safe since we can not signal, send in-
formation, faster than the speed of light (outside of the forward light cone of
the measurement event).

Figure 4: Sketch of expected propagation of information (at the speed of light)

due to measurement event of the field φ̂(t, x).

The result is that no information may be transmitted via the field across a
space-like interval ((xA − xB)2 < 0).

Now, we have to agree on which quantities are observable, and a natural guess
is to study the correlation function

〈0| φ̂(x0, x)φ̂(y0, y) |0〉 . (140)

This is unfortunately wrong, since the correlation function has no operational
meaning, and can not be directly measured, since the field operators are not
Hermitian, in general.

Digression: Interference experiment
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To study correlation functions which can be measured in the lab via experiment,
consider the following interference experiment set up with a Klein-Gordon field
with auxiliary modes of light used to perform measurements and generate re-
sults.

Figure 5: Schematic of experiment to measure the correlation of two spacetime
locations and the Klein-Gordon field under measurement.

1. Prepare the field and auxiliary system (left and right) in the vacuum state

|0〉field |0〉left |0〉right . (141)

2. Apply the Hadamard gate (beam splitter) to the left and right auxiliary
states

|0〉field

(
1√
2

(
|0〉left |1〉right + |1〉left |0〉right

))
. (142)

3. Create a particle at x or y via the unitary operator

Û(x)⊗ |1〉 〈1|left ⊗ Iright + Û(y)⊗ Ileft |1〉 〈1|right (143)

Applied to the state in Step 2, which evolves to the state (dropping ”left”
and ”right” labels)

1√
2

(
Û(y) |0〉field |0 1〉+ Û(x) |0〉field |1 0〉

)
(144)

4. Apply a second beam splitter to the auxiliary states to check for interfer-
ence in the final state

1

2

(
Û(x) + Û(y)

)
|0〉field |0 1〉+

1

2

(
Û(x)− Û(y)

)
|0〉field |1 0〉 (145)
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5. Detect auxiliary states |0 1〉 and |1 0〉.

The probability of measuring one of the states, |0 1〉, for example, is

P(|0 1〉) =
1

4
〈0|field

(
Û†(x) + Û†(y)

)(
Û(x) + Û(y)

)
|0〉field (146)

=
1

2
+

1

2
Re
[
〈0|field Û

†(x)Û(y) |0〉field
]

(147)

=
1

2
+

1

2
Re
[
〈0|field e

−iεφ̂(x)eiεφ̂(y) |0〉field
]

(148)

P(|0 1〉) =
1

2
+

1

2
Re
[
〈0|field e

−iεφ̂(x)+iεφ̂(y)+ 1
2 ε

2[φ̂(x),φ̂(y)] |0〉field
]

(149)

(150)

Where the last line is gotten via the Baker-Campbell-Hausdorff relation, since
the two fields operators do not necessarily commute, and the interference be-
tween the two measurement events is determined by whether the commutator
is zero or nonzero, which is calculated

[φ̂(x), φ̂(y)] =

∫
d3p

(2π)3

∫
d3q

(2π)3

1√
4ωpωq

(
[âp, â

†
q]e
−ip·x+iq·y + [â†p, âq]e

ip·x−iq·y)
(151)

=

∫
d3p

(2π)3

1√
2ωp

(
e−ip·(x−y) − eip·(x−y)

)
· I (152)

[φ̂(x), φ̂(y)] = ∆(x− y) · I (153)

Where the commutation relation [âp, â
†
q] = (2π)3δ(3)(p − q) · I is used, and the

quantity ∆(x−y), the correlation function, which is Lorentz invariant, must
be zero when x and y are space-like separated, such that (x− y)2 < 0.

Consider the space-like separation, (x − y)2 < 0, and enter a reference frame
where x− y = (0, x− y), and the correlation function ∆(x− y) becomes zero!

∆(x− y) =
1

2

∫
d3p

(2π)3

1√
|p|2 +m2

(
eip·(x−y) − e−ip·(x−y)

)
(154)

=
1

2

∫
d3p

(2π)3

1√
|p|2 +m2

(
eip·(x−y) − eip·(x−y)

)
(155)

∆(x− y) = 0 (156)

Where the second line is gotten by applying the Lorentz transformation (x −
y)→ −(x− y), which is allowed for in a space-like interval.
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Figure 6: Sketch of spatial inversion of spacetime location y.

Therefore, information does not travel faster than the speed of light, and the
field operators respect causality when they are space-like separated! Note that
this does not yet prove that the entire theory is causal.

As a side note, consider the case where the two field measurements are time-
like separated, such that (x − y)2 > 0, and enter a reference frame where
x−y = (t, 0, 0, 0). In this reference frame of time-like separation, the correlation
function can not be zero

∆(x− y) =

∫
d3p

(2π)3

1√
2ωp

(
e−iωpt − eiωpt

)
(157)

=
1

4π2

∫ ∞
m

dE
√
E2 +m2e−iEt (158)

∆(x− y) ∼ e−imt − eimt 6= 0. (159)

Return to consider the (non-physical) two-point correlation function in a space-
like interval

D(x− y) = 〈0| φ̂(x)φ̂(y) |0〉 (160)

=

∫
d3p

(2π)3

1

2ωp
e−ip·(x−y) (161)

=
1

2

∫
d3p

(2π)3

1√
|p|2 +m2

eip·(x−y) (162)

=
m

4π2

1

|x− y|
K1(m|x− y|) (163)

D(x− y) ∼ e−m|x−y| 6= 0 (164)

Where K1(x) denotes the Hankel function.
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So, when x and y are space-like separated, this correlation function can not be
zero, and can therefore not carry any information, as it would have to travel
faster than the speed of light.

An important application of the correlation function is the Feynman propa-
gator, which is used later in perturbative expansions for describing interactions.

∆F (x− y) =

{
D(x− y), x0 > y0

D(y− x), x0 < y0
(165)

∆F (x− y) = 〈0| T [φ̂(x)φ̂(y)] |0〉 (166)

Where T [ ] is called the time-ordering operator

T [φ̂(x)φ̂(y)] =

{
φ̂(x)φ̂(y), x0 > y0

φ̂(y)φ̂(x), x0 < y0
(167)

Another important definition of the Feynman propagator is in terms of complex
variables and contour integrals.

Lemma:

∆F (x− y) =

∫
d4p

(2π)4

ie−ip·(x−y)

|p|2 −m2 + iε
(168)

=

∫
d3p

(2π)3

∫
C

dp0

2π

ie−ip·(x−y)

|p|2 −m2 + iε
(169)

Where the integrand of the contour integral over the complex variable p0 has
two poles at ±iε, and the contour is taken along the real p0 axis, and closed in
the upper or lower half-plane, depending on the value of p0.
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Figure 7: Poles of the Feynman propagator, where the contour may be taken
in the upper half-plane for t < 0, and in the lower half-plane for t > 0, where
t = x0 − y0.

Lastly, an observation that the Feynman propagator, which is related thus far
to the two-point correlation function, is also a Green’s function (inverse of a
differential operator) for the Klein-Gordon partial differential equation

(∂2
0 −∇2 +m2)∆F (x− y) = −iδ(4)(x− y) (170)

∼ L̂ · L̂−1 = I (171)

Where the left-hand side is the product of a linear differential operator, the
Klein-Gordon operator, and its inverse, the Feynman propagator, and the right-
hand side of the equation is, in essence, the identity.
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7 Lecture 7: Representing Symmetries in QFT

Here we finish study of the quantum Klein-Gordon field by working out how
the Lorentz group is unitarily represented on the space of states on the Klein-
Gordon field. Recall that for a relativistic quantum field theory, we must have
a (projective) unitary representation of the Poincaré group U(Λ, a) on a Hilbert
space H. Thus far, we have constructed the Hilbert space, with respect to some
norm || · ||, as the space of states gotten by applying creation operators to the
vacuum state

H = span{â†p1
â†p2

. . . â†pn |Ω〉}
||·|| (172)

Digression: Continuous Groups of Symmetries

The central idea of a group with a continuous manifold structure (e.g., Lie
groups) is to study symmetries close to, localized to, the identity and then ex-
ponentiate to larger, more global, elements. Important continuous operations
on this manifold M include (closed) composition and inverse.

Figure 8: Sketch of a group manifold with identity I and an element of the
manifold g.

Closure: M×M→M (173)

g × h→ g · h (174)

Inverse: M→M (175)

g → g−1 (176)

The Poincaré group is an example of a continuous Lie group, and to understand
its structure, consider elements g ∈ M infinitesimally close to the identity I,
such that g− I ∼ O(ε). These infinitesimal elements are elements of the tangent
space TIM, which is a linear space and is called a Lie algebra. The basis vectors
of TIM are written as xj , j = 1, 2, . . . , dim(M).
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Examples of Tangent Spaces

1. 1× 1 unitary matrices U(1) = {φ ∈ C : |φ|2 = 1}
→ T1 U(1) = {z : (1 + εz)∗(1 + εz) = 1 to order ε, s.t. Re[z] = 0)}

2. 3× 3 Euclidean rotation matrices O(3) = {O ∈M3(R) : OTO = I}
→ TIO(3) = {X : (I+ εX)T (I+ εX) = I to order ε, s.t. X+XT = 0}
- Note that including inversions promotes O(3) to SO(3).

- Basis of O(3) =

{X =
∑3
j=1XjJ

j : J1 =
(

0 1 0
−1 0 0
0 0 0

)
, J2 =

(
0 0 1
0 0 0
−1 0 0

)
, J3 =

(
0 0 0
0 0 1
0 −1 0

)
}

3. 4× 4 Lorentz transformation matrices G = {Λ : ηµνΛµρΛ
ν
σ = ηρσ}

→ TIG = {ω : ηµν(I + εω)µρ(I + εω)νσ = ηρσ}
= {ω : antisymmetric, s.t. ωµν = −ωνµ}

Note the ”upstairs” covariant indices on ω

Using ”downstairs” contravariant indices

requires multiplication by the metric ηµν as above.

= {ω : change of basis to ω =

6∑
j=1

1

2
ΩjJ

j}

Change indices via the bijection j → (ρ σ),with 0 < ρ < σ ≤ 3

1→ (0 1); 2→ (0 2); 3→ (0 3)

4→ (1 2); 5→ (1 3); 6→ (2 3)

= {ω : with index bijection ω =
∑
(ρσ)

1

2
Ω(ρσ)J

(ρσ)} (Exercise)

This bijection allows the basis to be expressed

by the formula [J (ρσ)]µν = ηρσδσν − ησµδρν

Understanding the structure of a linear space infinitesimally close to the identity
yields information about the whole Lie group and the global structure of the
manifold. Also note that multiplication on this linear space is a continuous map
that strongly determines the group structure on the manifold.

To demonstrate how a Lie algebra on the (linear) tangent space produces a Lie
group, and vice versa, consider the element of the tangent space of a manifold
X ∈ TIM, such that I + sX ∼ eεX ∈M, to order ε.

Define the function g(s) = limn→∞(I + s
nX)n = esX ∈ M. Therefore, every

element of the Lie algebra (tangent space to the identity) determines an element
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of the Lie group (manifold). To go the other way, and determine the Lie algebra
from the Lie group, apply the logarithm map.

Figure 9: Figure of exponentiation map on Lie group (e.g., O(3)) manifold.
Translation from identity a distance s along the X direction. Resulting position
on manifold is called the exponential of sX.

Algebraic structure on tangent space

The algebraic structure on the tangent space is defined by the group commutator
on the manifold, which is also a group.

[ , ] :M×M→M (177)

(g, h)→ [g, h] = ghg−1h−1, ∀ g, h ∈M (178)

The group commutator also pushes forward to a mapping of the tangent space

[ , ] : TIM× TIM→ TIM (179)

Consider the following group commutator which is an element of the manifold

[I + εX, I + δY ] = (I + εX)(I + δY )(I− εX)(I− δY ) (180)

= I + εδ(XY − Y X) +O(ε2) +O(δ2) + . . . (181)

∼ I + εδ[X,Y ] (182)

Where ε and δ are small, independent parameters, and the Lie algebra commu-
tator [X,Y ] is, therefore, an element of the tangent space of the manifold, such
that [X,Y ] ∈ TIM.
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Examples of Lie algebra commutators

1. U(1): trivial

2. O(3): [Jj , Jk] = −εjkl J l

3. Lorentz group: [Jρσ, Jτν ] = ηστJρν − ηρτJσν + ηρνJστ − ησνJρτ

E.g.,

[J01]µν =


0 1
1 0

0

0 0 0
0 0

 , [J12]µν =

 0 0 0
−1 0

0 1
0 0

0



[J01, J12] = −J13 =

 0 0 0
0 −1

0 0
0 1

0


Special names for this particular Lie group elements in the Lorentz

transformation

Generators of boosts (pure boost by exponentiating, s.t. e
1
2 εjK

j

):

J0j = Kj

Generators of rotations (elements of O(3) ⊂ Lorentz group):

J12 = J1, J13 = J2, J23 = J3

Representations of Lie groups

Consider a representation π of the Lie algebra TIM which is a linear map from
the tangent space to the Hilbert space of bounded linear operators, such that
the Lie bracket property is preserved, such that [π(X), π(Y )] = π([X,Y ])

π : TIM→ B(H) (183)

This representation is exponentiated to a representation of the Lie group man-
ifold M

π(g = eεX) = eεπ(X) (184)

This shows that one can either try to find matrices that obey the Lie group law,
or, more easily, focus on the Lie algebra (linear space) and find matrices that
obey the Lie bracket property; Lie group representations are often not worked
with directly, but the elements of the Lie algebra can just be exponentiated to
obtain the representation of the Lie group.

To implement a general Lorentz transformation on the Hilbert space of states
allowed in the Klein-Gordon field, Noether’s theorem, as well as the inverse
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Noether’s theorem, is employed. Noether’s theorem allows conserved currents
to be derived from symmetry transformations. Information in thrown out when
integrating the currents over space

∫
d3x to get the conserved charge, but the

time-like component is left alone, and information about the structure of the
symmetry transformation is conserved, which can be gotten back by the inverse
Noether’s theorem.

Recap of Noether’s theorem: For each symmetry of a field, with respect
to a coordinate transformation x → expεJ

ρσ

, there exists a conserved current
per Jρσ. For example, the group of Lorentz transformations is described by
six independent parameters, the generators of the transformation, associated
with six conserved currents. The conserved currents from the symmetries of the
Lorentz transformation have the form

J (ρσ) = xρTµσ − xσTµρ (185)

Where xµ are 4-vector spacetime coordinates, and Tµν are elements of the
energy-momentum tensor. The conserved charges are then gotten by integrating
over space

Q(ρσ) =

∫
d3xJ (ρσ) =

∫
d3x (xρT 0σ − xσT 0ρ) (186)

”Noether’s theorem is really just a fancy telescoping series in disguise.”

The arguably more profound statement regarding conserved charges and sym-
metries is the inverse Noether’s theorem.

Inverse Noether’s theorem: Conserved charges are the generators, represent
the Lie algebra, of the symmetry transformations from which they came, and
generate canonical transformations, or representations of the symmetries, on
phase space. Classically,

{Q(ρσ), Q(τν)}PB = ηστQρν − ηρτQσν + ηρνQστ − ησνQρτ (187)

Propose that we ”just put hats on” the conserved charges, and check that they
obey the Lie algebra of the Lorentz group. It turns out that this works for
free theories, and we have, at least, one representation of the Lie algebra of the
Lorentz group in the context of one, the Klein-Gordon, quantum field.

Q̂µν =

∫
d3x(xµT̂ 0ν − xν T̂ 0µ) (188)

Consider the 0jth conserved charge, using the specialized notation, and check
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that Q̂0j = K̂j does indeed generate boosts and is time independent.

Q̂0j = K̂j =

∫
d3x (xj T̂ 00 − x0T̂ 0j) (189)

K̂j = −t P̂ j +

∫
d3xxjĤ (t, x) (190)

dK̂j

dt
= −P̂ j + i[Ĥ,

∫
d3xxjĤ (t, x)] (191)

0 = P̂ j + i[Ĥ, K̂j ] (192)

[Ĥ, K̂j ] = −iP̂ j . (193)

Where P̂ j is the total field momentum, and Ĥ is the Hamiltonian density,
which does not commute with the Hamiltonian Ĥ. The third line cancels the
time dependence of the two right-hand side terms. This shows that an infinites-
imal shift in time and an infinitesimal boost is equal to an infinitesimal shift in
space.

Similarly for the generators of rotation, which are manifestly time independent,
it must be checked that they obey the correct Lie algebra.

Ĵjk =

∫
d3x π̂(x)(xj∂k − xk∂j)φ̂(x) (194)

To perform a Lorentz transformation on the Hilbert state space, a unitary op-
erator is created by putting some parameters Ω in front of the generators of
rotation and exponentiating

Û(Λ) = e−
1
2 Ωρσ Ĵ

ρσ

(195)

There are 9 commutation relations, that must be checked (Exercises), that
yield the full Lie algebra of the Poincaré group.

[Ĵj , Ĵk] = −iεjklĴ
l (196)

[Ĵj , K̂k] = −iεjklK̂
l (197)

[K̂j , K̂k] = iεjklĴ
l (198)

[Ĵj , P̂ k] = −iεjklP̂
l (199)

[K̂j , P̂ k] = iδjkĤ (200)

[K̂j , Ĥ] = iP̂ j (201)

[Ĵj , Ĥ] = [P̂ j , Ĥ] = [P̂ j , P̂ k] = 0 (202)

This now demonstrates how the Klein-Gordon field gives a full (Lie algebra)
representation of the Poincaré group, and proves that to perform a Poincaré
transformation on a state of Klein-Gordon particles, one simply applies a uni-
tary transformation via exponentiation of the above operators, which are the
generators of transformations.
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8 Lecture 8: Interactions in QFT

Thus far, we have studied the Klein-Gordon quantum field, which evolves with
time in the Heisenberg picture via the Klein Hamiltonian HKG, the generator
of time translations

φ̂(t, x) = eiĤKGtφ̂(0, x)e−iĤKGt. (203)

We have obtained a full unitary representation of the Poincaré group for the
Klein-Gordon field by constucting a space of states in terms of the field position
operator φ̂ and the field momentum operator π̂ via the generator of time transla-
tion Ĥ, the generators of spatial translation P̂ j , and the conserved charges Q̂µν .
This is a free theory, where the dynamics of two or more spacetime events evolve
completely independently of each other with no interactions between particles
and field, and is relatively easy to solve.

To attempt to account for interactions, construct a Hilbert space spanned by
states of the form {â†pâ†q |0〉}, and add a (spatially localized) momentum distri-
bution

|Φ2〉 =

∫
d3pd3q

(2π)6
φx(p)φy(q) · â†pâ†q |0〉 (204)

This states evolves according to the Hamiltonian

|Φ2(t)〉 = e−iĤKGt |Φ2〉 (205)

=

∫
d3pd3q

(2π)6
φx(p)φy(q)e−iĤKGtâ†pe

iĤKGte−iĤKGtâ†qe
iĤKGt |0〉 (206)

Where ĤKG is quadratic in the creation operators â†p, meaning that the quantity

e−iĤKGtâ†pe
iĤKGt is linear in the creation operators â†p. Therefore, the particles

eveolve independently of each other in this attempted formalism, and there are
no interactions, which is unphysical for an interacting theory.

Desired characteristics of the interactions that we are attempting to describe
are

1. Model physical experiments

2. Maintain Lorentz invariance

3. Local interactions

To fulfill these characteristics, we consider studying models with (classical) La-
grangian densities of the form

L =
1

2
(∂µφ(x))(∂µφ(x))− 1

2
m2φ2(x)−

∞∑
n≥3

λn
n!
φn(x) (207)
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It will later be shown that Lagrangian densities with n > 4 are irrelevant to
observable physics, and n = 3 leads to instabilities, and neither case is renor-
malizable. Therefore, the only relevant interacting scalar quantum field theory
is the n = 4 case

L =
1

2
(∂µφ(x))(∂µφ(x))− 1

2
m2φ2(x)− λ

4!
φ4(x) (208)

In a quantum field theory, interactions are handled in several ways

1. Perturbation theory

Expand Hamiltonian in Taylor series in terms of a small parameter

Leads to a solvable model when this parameter is set to zero

Feynman diagrams systematically handle all interactions in infinite series

2. Variational methods

Approximates the system and minimizes error parameters

3. Monte Carlo sampling

4. Exact solutions

Bethe Ansatz in (1 + 1) dimensions

Topological QFT in (2 + 1) dimensions

Supersymmetry in higher dimensions

Large N limit

Perturbation theory

Consider the ”small” addition Ĥint to the free theory Hamiltonian Ĥ0 to make
the full Hamiltonian Ĥ

Ĥ = Ĥ0 + Ĥint (209)

Technically, we demand that ||Ĥint||∞ << 1, but it often happens that ||Ĥint||∞ →
∞, where ||Ĥint||∞ is the largest eigenvalue that dominates the error estimates.
Therefore, we pretend that ||Ĥint||∞ << 1, and solve the time-dependent
Schrödinger equation

i
d

dt
|ψ〉 = Ĥ |ψ〉 (210)

Interaction picture

Enter a new reference frame, the interaction picture, or the Heisenberg
picture, where all states and operators from the Schrödinger picture, denoted
by subscript ”S”, are transformed via

|ψI(t)〉 = eiĤ0t |ψS(t)〉 (211)

O = eiĤ0tOS e−iĤ0t (212)
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The time evolution on the interaction space of states is then

i
d

dt
|ψI(t)〉 = i

d

dt
eiĤ0t |ψS(t)〉 (213)

= −Ĥ0e
iĤ0t |ψS(t)〉+ ieiĤ0t

d

dt
|ψS(t)〉 (214)

= −Ĥ0e
iĤ0t |ψS(t)〉+ ieiĤ0t(−iĤ |ψS(t)〉) (215)

= (−Ĥ0e
iĤ0t + eiĤ0t(Ĥ0 + Ĥint)) |ψS(t)〉 (216)

= (���
��−Ĥ0e
iĤ0t + eiĤ0t(��̂H0 + Ĥint)) · e−iĤ0teiĤ0t · |ψS(t)〉 (217)

i
d

dt
|ψI(t)〉 = (Ĥint)I(t) |ψI(t)〉 (218)

Note: From here we drop the subscript ”I” on the interaction Hamiltonian

(Ĥint)I(t)→ Ĥint(t). (219)

The interacting time-dependent solution is

|ψI(t)〉 = Û(t, t0) |ψI(t0)〉 . (220)

Where the operator Û(t, t0) is the propagator, and satisfies the equation

i
d

dt
Û(t, t0) = Ĥint(t) Û(t, t0) (221)

Integrating this equation with respect to t yields a constraint on the propagator

Û(t, t0) = I− i
∫ t

t0

dt′ Ĥint(t
′)Û(t′, t0) (222)

One way to solve for Û(t, t0) is to guess a solution and check if both sides of the
constraint equation are equal.

Another approach is through fixed point iteration

1. Make a guess for Û(t, t0)

2. Evaluate how wrong it is

3. Minimize error by adding and/or modifying terms to guess

4. Repeat, by substituting the old right-hand side into the new right-hand
side, until the left-hand side and the right-hand side of the constraint
approaach each other

The repeated substitution of the propagator into the constraint equation pro-
duces the Dyson series, where the nth has the form

Û(t, t0) = (−i)n
∫ t

t0

dt′
∫ t′

t0

dt′′· · ·
∫ t(n−1)

t0

dt(n−1) Ĥint(t
′)Ĥint(t

′′) . . . Ĥint(t
(n−1))

(223)
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By the triangle inequality and the product inequality, the norm of the nth term
has an upper bound

||
∫
. . . ||∞ ≤

(t− t0)n

n!
(||Ĥint||∗∞)n. (224)

And, since Ĥint(t) is just unitarily rotated from Ĥint

||Ĥint||∗∞ = sup
t′∈[t,t0]

||Ĥint(t
′)||∞ = (||Ĥint||∞)S . (225)

If ||Ĥint||∞ << 1, the series has a nonzero radius of convergence.

Theorem: Û(t, t0) = T [e
−i

∫ t
t0
dt′ Ĥint(t

′)
], where T [ ] is the time-ordering oper-

ator.

To prove, expand the right-hand side in a Taylor series, apply time-ordering,
and check that the two sides are equal.

Observables in QFT

An important observable in QFT is scattering cross sections in scattering ex-
periments. Namely, the S-matrix is determined by Green’s functions (n-point
correlation functions)

G(n)(x1, x2, . . . , xn) = 〈Ω| T [φ̂1H φ̂2H . . . φ̂nH ] |Ω〉 (226)

Where |Ω〉 is the vacuum state of the Hamiltonian, and the subscript ”H” de-

notes the Heisenberg picture, such that φ̂jH = φ̂(xj) = φ̂(tj , xj).

Claim:

G(n)(x1, x2, . . . , xn) =
〈0| T [φ̂1I φ̂2I . . . φ̂nI Ŝ] |0〉

〈0| Ŝ |0〉
(227)

Where 〈φ| Ŝ |ψ〉 = limt±→±∞ 〈φ| Û(t+, t−) |ψ〉, and Ĥ0 |0〉 = 0.

Proof:
Assume that t1 > t2 > · · · > tn.
Then the right-hand side of the numerator reads

〈0| Û(∞, t1)φ̂1I Û(t1, t2)φ̂2I . . . φ̂nI Û(tn,−∞) |0〉 (228)

= 〈0| Û(∞, t1)φ̂1H φ̂2H . . . φ̂nH Û(t0,−∞) |0〉 (229)

Where φ̂H(t, x) = Û†(t, t0)φ̂I(t, x)Û(t, t0)
Now dealing with

Û(t0,−∞) |0〉 = lim
t′→−∞

lim
t→t0

eiĤ0(t−t0)e−iĤ(t−t′)e−iĤ0(t′−t) |0〉 (230)

= lim
t′→−∞

(|Ω〉 〈Ω|+
∑
n>0

e−iEn(t0−t′) |En〉 〈En|) |0〉 (231)
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Where the nonvanishing terms are written in the eigenbasis of Ĥ.
Quantum fields have a continuous spectra, such that

∑
n>0 ∼

∫
dE.

Invoke the Riemann-Lebesgue Lemma (limk→∞ ψ̂(k) = limk→∞
∫
ψ(x)eikxdx =

0), and consider

lim
t′→−∞

∫
dE 〈E|0〉 e−iE(t−t0) 〈φ|E〉 = 0 (232)

The numerator is now equal to

〈0|Ω〉 〈Ω|0〉 〈Ω| φ̂1H . . . φ̂nH |Ω〉 (233)

Where 〈0|Ω〉 〈Ω|0〉 is equal to the denominator and cancels. QED.

Essentially, interacting quantum field theories come down to throwing in a Tay-
lor series for the S-matrix and φ̂iI , and truncating some terms.
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9 Lecture 9: Interactions and Feynman Diagrams

The story so far

• Built a free (non-interacting) relativistic quantum field theory, namely,
the Klein-Gordon field, with Hamiltonian ĤKG.

• Added (Lorentz invaraint) interactions via the Hamiltonian

Ĥint =
λ

4!

∫
d3x φ̂4(x), λ >> 1 (234)

.

• Used perturbation theory to solve the Hamiltonian Ĥ = ĤKG + Ĥint.

• Studied observable quantities via the n-point correlation function

G(n)(x1, . . . ,xn) = 〈Ω| T [φ̂H(x1) . . . φ̂H(xn)] |Ω〉 (235)

.

Where |Ω〉 is the full, interacting vacuum state, and φ̂H(xi) = φ̂iH =

φ̂I(xi) = φ̂iI is the field operator in the Heisenberg, interaction, picture,
where the observables (e.g., field operators) closer to direct observation.

• Claimed and ”proved” that the n-point correlation function can be calcu-
lated in terms of the ground state expectation values of the field operators,
and the scattering S-matrix .

G(n)(x1, . . . ,xn) =
〈0| T [φ̂1I . . . φ̂nIS] |0〉

〈0| S |0〉
(236)

Where 〈φ| S |ψ〉 = limt→∞ 〈φ| T [e−i
∫ t
−t Ĥint(t

′)dt′ ] |ψ〉 , ∀ |φ〉 , |ψ〉

Now, to calculate quantities like the numerator of the n-point correlation func-
tion consider the field operator in the interaction picture (dropping the subscript
”I”)

φ̂I(x) = φ̂(x) =

∫
d3p√
2ωp

(âpe
−ip·x + â†pe

ip·x) = φ̂+(x) + φ̂−(x) (237)

Where p = (ωp, p), with ωp =
√
p2 +m2, such that p ·x = p0x0− p ·x, and the

newly defined operators annihilate the ground state, such that

φ̂+(x) |0〉 = 0 and 〈0| φ̂−(x) = 0. (238)
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For example, consider the time-ordering of the two particle case (note the no-
tation change for the four-vector in this section x→ x)

T [φ̂(x)φ̂(y)]x0>y0 = φ̂(x)φ̂(y)

= φ̂+(x)φ̂+(y) + φ̂+(x)φ̂−(y)

+ φ̂−(x)φ̂+(y) + φ̂−(x)φ̂−(y)

= φ̂+(x)φ̂+(y) +
(
φ̂−(y)φ̂+(x) + [φ̂+(x), φ̂−(y)]

)
+ φ̂−(x)φ̂+(y) + φ̂−(x)φ̂−(y)

T [φ̂(x)φ̂(y)]x0>y0 = φ̂+(x)φ̂+(y) +
(
φ̂−(y)φ̂+(x) +D(x− y) · I

)
+ φ̂−(x)φ̂+(y) + φ̂−(x)φ̂−(y)

Then the ground state expectation value of two interacting field operators is
simply the Feynman propagator

〈0| T [φ̂(x)φ̂(y)] |0〉 = ∆F (x− y) (239)

= i

∫
d4p

(2π)4

e−ip·(x−y)

p2 −m2 + iε
, ε > 0 (240)

=

{
D(x− y), x0 > y0

D(y − x), x0 ≤ y0
(241)

Wick Contraction and Normal Ordering

Introduce some notation for extracting Feynman propagators from quantities
like the expectation value of time-ordered field operators, called the Wick con-
traction. For two field operators, φ̂(x) and φ̂(y), and any three other operators
Â, B̂, and Ĉ, write

φ̂(x)φ̂(y) = ∆F (x− y) · I (242)

Aφ̂(x)Bφ̂(y)C = ∆F (x− y) · ÂB̂Ĉ (243)

Also introduce normal ordering, denoted by N [ ] that sends all ”dagger” op-
erators to the left. For example,

N [âpâ
†
qârâ

†
s] = â†qâ

†
sâpâr (244)

Observe the relationship between time-ordering and normal-ordering using the
Wick contraction

T [φ̂(x)φ̂(y)] = N [φ̂(x)φ̂(y) + ∆F (x− y) · I] (245)

= N [φ̂(x)φ̂(y) + φ̂(x)φ̂(y) (246)
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A more involved example of the time-ordering of four field operators, where the
only nonzero terms at the end of acting on states will be the ”double contrac-
tions”, since

T [φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)] = N [φ̂1φ̂2φ̂3φ̂4 + ”all possible contractions”]

= N [φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4

+ φ̂1φ̂2φ̂3φ̂4 + +φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4

+ φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4 + φ̂1φ̂2φ̂3φ̂4]

The ground state matrix elements of T [φ̂1φ̂2φ̂3φ̂4] is then

〈0| T [φ̂1φ̂2φ̂3φ̂4] |0〉 =(((
((((

((
〈0| N [φ̂1φ̂2φ̂3φ̂4] |0〉+���

���
���

〈0| N [φ̂1φ̂2φ̂3φ̂4] |0〉+��. . .

+ ∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)

+ ∆F (x1 − x4)∆F (x2 − x3)

Where these are the values of the associated Feynman diagrams, which we write
down in a ”reverse” way, extracting the diagram from the calculated value.
Later, we will extract the values from the diagrams.

Figure 10: Feynman diagrams representing the nonzero values in the four par-
ticle example above.

Now stated in its general form

Wick’s Theorem: T [φ̂1 . . . φ̂n] = N [φ̂1 . . . φ̂n + ”all possible contractions”].

Proof:
Induct on n, with the base case n = 2 confirmed to be true, and check that the
n− 1 case implies the full n case.
Assume, without loss of generality, that everything is time-ordered, such that
x0

1 > x0
2 > · · · > x0

n.
Then the left-hand side of Wick’s theorem becomes

T [φ̂1 . . . φ̂n] = φ̂1φ̂2 . . . φ̂n. (247)
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Use the inductive hypothesis for n− 1 case on this equation

φ̂1φ̂2 . . . φ̂n = (φ̂+
1 + φ̂−1 )N [φ̂2 . . . φ̂n +

(
all possible contractions

excluding φ̂1.

)
]

= φ̂+
1 N [φ̂2 . . . φ̂n +

(
all possible contractions

excluding φ̂1.

)
]

+N [φ̂−1 φ̂2 . . . φ̂n + φ̂−1

(
all possible contractions

excluding φ̂1.

)
].

Since φ̂−1 is already normal-ordered.

Focus on the first part of the first term of φ̂1φ̂2 . . . φ̂n above

φ̂+
1 N [φ̂2 . . . φ̂n] = N [φ̂2 . . . φ̂n]φ̂+

1 + [φ̂+
1 ,N [φ̂2 . . . φ̂n]]

= N [φ̂+
1 φ̂2 . . . φ̂n]

+N [[φ̂+
1 , φ̂2]φ̂3 . . . φ̂n + φ̂2[φ̂+

1 , φ̂3]φ̂4 . . . φ̂n + · · ·+ φ̂2φ̂3 . . . φ̂n−1[φ̂+
1 , φ̂n]]

φ̂+
1 N [φ̂2 . . . φ̂n] = N [φ̂+

1 φ̂2 . . . φ̂n + φ̂+
1 φ̂2φ̂3 . . . φ̂n + φ̂+

1 φ̂2φ̂3 . . . φ̂n + · · ·+ φ̂+
1 φ̂2φ̂3 . . . φ̂n].

Where the second equality follows from [φ̂†j , φ̂k] ∝ I.
Now, focus on the rest of the first term of φ̂1N [φ̂2 . . . φ̂n]

φ̂+
1 N [

(
all possible contractions

excluding φ̂1.

)
] = [φ̂+

1 ,N [. . . ]] +N [. . . ]φ̂+
1

= N [

(
all possible contractions

including φ̂+
1 .

)
] +N [φ̂+

1

(
all possible contractions

excluding φ̂1.

)
]
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10 Lecture 10: Feynman Rules for ϕ4 Theory

In perturbative, interacting field theories, we must calculate the n-point corre-
lation function

G(n)(x1, . . . , xn) =
〈0| T [φ̂1 . . . φ̂nS] |0〉

〈0| S |0〉
(248)

Where the scattering matrix elements and the interacting Hamiltonian are

〈φ| S |ψ〉 = lim
t→∞

〈φ| T [e−i
∫ t
−t ĤI(t′)dt′ ] |ψ〉 (249)

ĤI(t) =
λ

4!

∫
d3x φ̂4(x) (250)

The numerator and denominator of the correlation function must be expanded
perturbatively in the small parameter λ.

G(n) =
a0 + λa1 + λ2a2 + . . .

b0 + λb1 + λ2b2 + . . .
, where aj , bj ∈ C (251)

=
1

b0
(a0 + λa1 + . . . )(1− λb1

b0
+ λ2 b2

b0
+ . . . ) (252)

=O(λ)
1

b0
(a0 + λa1)(1− λb1

b0
) (253)

G(n) =
a0

b0
+ λ(

a1

b0
− b1a0

b20
) to order λ (254)

This gives the intermediate task of calculating the coefficients of the perturba-
tive expansion: a0, a1, b0, and b1.

Consider the n = 2 case

G(2)(x, y) = lim
t→∞

〈0| T [φ̂(x)φ̂(y)e−i
∫ t
−t ĤI(t′)dt′ ] |0〉

〈0| T [e−i
∫ t
−t ĤI(t′)dt′ ] |0〉

(255)

Expand the exponentials, keeping to order λ, and insert into numerator. The
numerator is then

〈0| T [φ̂(x)φ̂(y)S] |0〉 = 〈0| T [φ̂(x)φ̂(y)e−i
∫ t
−t ĤI(t′)dt′ ] |0〉 (256)

= 〈0| T [φ̂(x)φ̂(y)

(
I− iλ

4!

∫
d4z φ̂4(z)

)
] |0〉 (257)

= 〈0| T [φ̂(x)φ̂(y)] |0〉 − iλ

4!

∫
d4z 〈0| T [φ̂(x)φ̂(y)φ̂4(z)] |0〉

(258)

〈0| T [φ̂(x)φ̂(y)S] |0〉 = ∆F (x− y)− iλ

4!

∫
d4z 〈0| N [φ̂(x)φ̂(y)φ̂4(z) + all contractions] |0〉

(259)
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The last line is gotten by applying Wick’s theorem, and recall that any terms
with uncontracted operators will evaluate to zero in the vacuum expectation
value (e.g., 〈0| N [. . . ] |0〉), and only the fully contracted terms will contribute,

such as 〈0| φ̂(x)φ̂(y)φ̂(z)φ̂(z)φ̂(z)φ̂(z) |0〉, and 〈0| φ̂(x)φ̂(y)φ̂(z)φ̂(z)φ̂(z)φ̂(z) |0〉.

Now, ”all good physics and math ends in linear algebra, combinatorics, or both”,
and we use combinatorics to calculate how many fully contracted terms we
expect to see in the expansion.

• There are (2n− 1)!! full contractions per expansion, where n is the num-
ber of unique particles. In this case, n = 3 for x, y, and z spacetime
coordinates.

• There are 2 unique contraction types out of the (2 · 3 − 1)!! = 15 full
contractions.

∆F (x− y)∆2
F (z − z)

∆F (x− z)∆F (y − z)∆F (z − z)

• There are 3 contractions of the first type

Connect x→ y in 1 way and z → z twice, each in only 1 way.

• There are 12 contractions of the second type

Connect x→ z in 4 ways, followed by y → z in 3 ways, and 4 ·3 = 12.

Return to the numerator of the correlation function, and pretending that ∆F (z−
z) is finite, for now,

〈0| T [φ̂(x)φ̂(y)S] |0〉 = ∆F (x− y)

+

(
− iλ

4!

)∫
d4z 〈0| N [((((

(((φ̂(x)φ̂(y)φ̂4(z) +���
�all partial

contractions
+ all full

contractions
] |0〉

= ∆F (x− y) + 3 ·
(
− iλ

4!

)∫
d4z∆F (x− y)∆2

F (z − z)

+ 12 ·
(
− iλ

4!

)∫
d4z∆F (x− z)∆F (y − z)∆F (z − z)

And in diagrammatic form

Figure 11: Feynman diagram representation of the above integral values for the
ϕ4 interacting theory.
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Similarly calculate the denominator of the two-point correlation function to
obtain the following

Figure 12: Feynman diagram calculation for the two-point correlation function
for the ϕ4 theory. Note that this ”miraculous” cancellation of divergent terms
(the ”self-interacting figure-eight”) actually follows from a more general result.

The arguments of the correlation function are the external vertices, and the
spacetime coordinates of the interacting Hamiltonian are the internal vertices.
To calculate the value of a diagram, associate a factor, the Feynman propagator,
∆F (x − y) to each edge connecting external vertices (e.g., x and y), and asso-
ciate the factor −iλ

∫
d4z (dividing by the symmetry factor 4!) to each internal

vertex (e.g., z).

For example,
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Figure 13: Example Feynman diagram and associated values with 4 external
vertices and 4 internal vertices.

In summary, to calculate G(2)(x, y) to arbitrary order, sum over all possible
diagrams with 2 external vertices, subject to the (canonical) Feynman rules for
ϕ4 theory.

G(2)(x, y) =
〈0| T [φ̂(x)φ̂(y)S] |0〉

〈0| S |0〉
=
(

sum of all possible diagrams
with two external vertices

)
(260)

Figure 14: Canonical Feynman rules for ϕ4 theory.

Note the abscence of the inverse 4! factor in rule number 2, as it is added based
on observation, and not considered a component on the canonical rules.
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Higher order terms in the expansion of the two-point correlation function be-
come successively more complicated and often redundant. For example, The
self-interacting ”figure-eight” diagram of an internal vertex can occur in 4! · 8 =
192 ways. The redundancy is encoded in the symmetry factor (see rule 4
above) of the diagram. Typically, in practice and computation, distinct di-
agrams are written down and overcounting is determined via the symmetry
factor.
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11 Lecture 11: Feynman Rules and Vacuum Bub-
bles

The Feynman rules demonstrated in the last lecture are specifically for the ϕ4

theory of interacting quantum fields in position space, and allow the calculation
of n-point correlation (Green’s) functions, which are not directly observable,
but related to scattering amplitudes which are directly observable. We did not
rigorously prove, but demonstrated (with n = 2) the feasibility of and accepted
as ”definition”, that the n-point correlation function is equal to the sum of all
possible diagrams with n external vertices, subject to the Feynman rules in
position space. Keep note that we did not consider n > 2 or λ > 1 in the
following equality.

G(n)(x1, . . . , xn) =
〈0| T [φ̂(x1) . . . φ̂(xn)S] |0〉

〈0| S |0〉
(261)

=
(

sum of all possible diagrams with n external vertices
subject to Feynman rules in position space

)
(262)

A ubiquitous issue and deep concern in quantum field theory is the appearance
infinities in calculations. Nature seems to suggest that there are no infinities,
unless one asks the wrong question. (Are there actually any physical quantities
that can be proven to be infinite by experiment, such as the energy levels of
the hydrogen atom or the results of continuous scattering theory?) Many in-
finities that appear due to the application of the Feynman rules will be trivially
dispelled (cf., in quantum mechanics when an infinite ground state energy is
calculated, simply apply a shift to make it finite). Vacuum bubbles are dia-
grams with no external vertices (e.g., self interactions) that evaluate to infinity,
but will cancel in calculating the n-point correlation function G(n)(x1, . . . , xn),
as we saw in the n = 2 case in the last lecture.

Feynman Rules in Momentum Space (ϕ4 Theory)

Remember that the perturbation expansion of the S-matrix and the Green’s
function can be calculated in momentum space via the Feynman rules in mo-
mentum space. The momentum space Feynman propagator has the form

∆F (x, y) =

∫
d4p

(2π)4

ie−ip·(x−y)

p2 −m2 + iε
(263)

Calculating the perturbation expansion in momentum space may make addi-
tional cancellations more apparent. The Feynman rules for ϕ4 theory in mo-
mentum space are as follows

1. For each propagator with momentum p, add a factor of i
p2−m2+iε .

2. For each (internal) vertex, add a factor of −iλ.
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3. For each external vertex, add a factor of e−ip·x.

4. Impose momentum conservation at each vertex.

5. Integrate over undetermined momenta.

6. Divide by symmetry factor.

Figure 15: Diagrammatic representation for the Feynman rules in momentum
space.

Returning to the n = 2 case, a general diagram consists of a product of connected
components and disconnected components. Note that the external vertices (x
and y in the n = 2 case) are always connected, since their degrees are odd. For
example,
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Figure 16: Typical diagram for n = 2 case.

All possible disconnected pieces form a countable set.

Figure 17: Countable set of all possible disconnected pieces.

Each type of disconnected diagram Dj has a unique value v(Dj) = vj , which
are all infinite. To interpret this result, place a cutoff on the theory. It must
be checked that the results, after evaluating the diagrams of the expansion, do
not depend on the cutoff imposed.

Suppose that a given diagram D has nj components of type Dj , including the
connected component. The value of the diagram is the product of the values of
the connected and disconnected components.

vj = vconnected ·
∞∏
j=1

1

nj !
v
nj
j (264)

Where nj ! is the symmetry factor.

For the n = 2 diagram example above, we have the product of the connected
piece with disconnected types D1, D3, and D2, respectively, with nj = 1 for
each diagram type j. Therefore the value of the diagram is

v(D) = vconnected · v1 · v3 · v2 (265)
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Figure 18: Typical diagram for n = 2 case with disconnected pieces labelled by
type.

This allows us to write down a more closed form for the series expansion for
G(2)(x, y), and ditch the ”all possible diagrams” bit. The numerator ofG(2)(x, y)
is then

Numerator(G(2)(x, y)) =
∑

connected

∑
{nj}

vconnected ·
∞∏
j=1

1

nj !
v
nj
j (266)

=
∑
conn.

vconn.
∑
{nj}

∞∏
j=1

1

nj !
v
nj
j (267)

=
∑
conn.

vconn.

∞∏
j=1

∑
{nj}

1

nj !
v
nj
j (268)

Numerator(G(2)(x, y)) =
∑
conn.

vconn. · e
∑∞
j=1 vj (269)

Note that we justify these manipulations of not-necessarily-convergent series by
the implemented cutoff, which makes each value finite. Similarly, the denomi-
nator is simply the sum over the same exponential

Denominator(G(2)(x, y)) = e
∑∞
j=1 vj (270)

This cancels exactly with the same term in the numerator, pulled out of the
sum over connected parts. Therefore, the 2-point correlation function, which
generalizes to n > 2, is equal to the sum of all connected components subject
to the Feynman rules.

G(2)(x, y) =

(
sum over all connected diagrams

subject to Feynman rules

)
(271)
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Figure 19: The sum over all connected diagrams subject to the Feynman rules.

Cutoffs in QFT

Consider the Klein-Gordon Hamiltonian

ĤKG =
1

2

∫
d3x

(
π̂2(x) + (∇φ̂(x))2 +m2φ̂2(x)

)
(272)

This assumes an infinitie number of degrees of freedom, one per each point in
spacetime x ∈ M4. Now, for example, our theory and understanding of space-
time breaks down below the Planck scale. We can either continue to work in
ignorance, or remember that we are dealing in effective theories that, hope-
fully, represent something more fundamental. For example, the Navier-Stokes
equation is an effective theory for quantum chromodynamics (QCD). An effec-
tive theory is a description which explains all observations up to a given scale
s, often expressed in inverse length, and may break down beyond the given scale.

To impose a cutoff on the Hamiltonian, add a ”fixing” term ĤΛ which is well-
behaved up to the scale Λ, and must match predictions of the original Hamil-
tonian Ĥ

Ĥ → Ĥ ′ = Ĥ + ĤΛ (273)

To modify the new Hamitonian for other scales, Wilson’s renormalization
theory may be used, where the ”fixing” Hamiltonian ĤΛ is parameterized by

57



the field operators and their derivatives

ĤΛ =
∑

polynomials

P(φ̂,∇φ̂,∇2φ̂, . . . , π̂,∇π̂,∇2π̂, . . . ) (274)

= c0φ̂+ c1φ̂
2 + · · ·+ d0π̂ + d1π̂

2 + · · ·+ e1(∇φ̂)2 + . . . (275)

Only a finite number of the coefficients are nonzero and have an effect on ob-
servations beyond the scale Λ. By effect, the value of the term in the sum over
field operator polynomials is not suppressed by inverse powers of Λ. Such terms
that are not suppressed and have an effect on observations are called relevant
terms. Any cutoff that is imposed must differ only by relevant terms.

For example, the relevant terms up to 4 dimensions is

{φ̂, φ̂2,∇2φ̂, π̂, π̂2, φ̂3, φ̂4}. (276)

The simplest cutoff to impose on the momentum states of the free Klein-Gordon
Hamiltonian is

ĤKG =

∫
d3p

(2π)3
ωpâ

†
pâp → ĤKG + ĤΛ =

∫
|p|<Λ

d3p

(2π)3
ωpâ

†
pâp (277)

And the simplest cutoff for ϕ4 interaction is

Ĥϕ4 =
λ

4!

∫
d3x φ̂4(x)→ Ĥϕ4 + ĤΛ =

∫
|pj |<Λ

d3p1d
3p2d

3p3d
3p4(. . . ) (278)

The new Hamiltonian for the quantum Klein-Gordon field with ϕ4 interactions,
and an imposed cutoff at scale Λ is then written as

Ĥ → Ĥ ′ = ĤKG + Ĥϕ4 + ĤΛ (279)

=

∫
|p|<Λ

d3p

(2π)3
ωpâ

†
pâp +

∫
|pj |<Λ

d3p1d
3p2d

3p3d
3p4(. . . ) (280)
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12 Lecture 12: The S-matrix in ϕ4 Theory

Recall that some diagrams evaluate to infinity in the calculation of the time-
ordered n-point correlation function

G(n)(x1, . . . ,x n) = 〈Ω| T [φ̂(x1) . . . φ̂(xn)] |Ω〉 =
(

sum over all connected diagrams

with n external points/legs

)
(281)

Example: n = 4 Diagrams

For example, the n = 4 case sums over diagrams like the following

Figure 20: Sum over connected diagrams for n = 4 case.

Diagrams with one loop (first order) evaluate to infinity, but are easily eschewed.
Two vertex diagrams (last one in figure above) is a much more difficult infinity
to tame, and causes divergences, typically of the form, in momentum space,

I =

∫
d4p

(2π)4

i

p2 −m2 + iε
(282)

To attempt to tame the infinity, impose a cutoff at scale Λ

I → I(Λ) =

∫
|p|<Λ

d4p

(2π)4

i

p2 −m2 + iε
. (283)

To cope with arbitrary choices of Λ, arbitrary coupling constants can be em-
ployed to compensate and remove possible Λ-dependencies in calculations. Fur-
ther explanation can be found in the renormalization theory of scalar particles.

Scattering Theory

Scattering theory is an effective theory for large time limits |t| >> constant.
The probability of a scattering event occuring, the scattering amplitude, in the
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case of well-collimated beams with incoming momenta kA and kB , and outgoing
momenta pj , j = 1, . . . , n, is related to the quantity

out 〈p1p2 . . .pn|kAkB〉in = 〈p1p2 . . .pn| S |kAkB〉 . (284)

Figure 21: Schematic of scattering experiment with incoming momenta and
outgoing momenta as described above.

For the free, non-interacting, theory, we have the equation for incoming mo-
menta related to the free vacuum state, denoted by | 〉0,

|kAkB〉in =
√

2ωkAωkB â
†
kA
â†kB |0〉0 . (285)

The task at hand is to calculate the scattering amplitude 〈p1p2 . . .pn| S |kAkB〉.
Define the S-matrix as

S = I + iT̂. (286)

Where the identity I is the dominant term in small intercation, where almost
nothing happens, and the operator T̂ is the dominant in larger interactions.
Introduce the quantity M to factor out the conservation of momentum in the
scattering process, where all momenta are ”on shell”, such that p0 = ωp.

〈p1 . . .pn| iT̂ |kAkB〉 = (2π)4δ(4)((kA + kB)−
n∑
j=1

pj) · iM((kA,kB)→ pf ).

(287)
Recall that the differential scattering cross section of 2 → 2 particles in the
center of mass frame is (

dσ

dΩ

)
CM

=
|M|2

64π2E2
CM

(288)

To compute the scattering amplitude 〈p1p2 . . .pn| S |kAkB〉, take ”on faith”
that for small interactions

|kAkB〉int ∝ lim
t→∞

e−iĤt |kAkB〉0 . (289)
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And compare this to the result related to the Riemann-Lebesgue lemma

|Ω〉int = lim
t→∞

e−iĤt |0〉0 . (290)

An argument for the plausibility for the second equality of |Ω〉int, where Ĥ =

ĤKG + Ĥint, ĤKG |0〉0 = 0, and Ĥ |Ω〉int = 0, is as follows. Suppose that the

Hamiltonian is parameterized by s ∈ [0, 1], such that Ĥ(s) = ĤKG + sĤint,
and that the free Hamiltonian ĤKG has a spectral gap of ∆(s) = m. When
s = 0, we have the free, Klein-Gordon Hamiltonian, and when s = 1, we have
the interacting, ϕ4 Hamiltonian. Then it’s plausible that the spectral gap in
the spectrum of eigenvalues of Ĥ(s) will always be nonzero for at least just one
eigenvalue, and the spectrum is adiabatically connected (can’t instantaneously
go from massful to massless, but interactions can be turned on/off gradually).

Figure 22: Schematic of the spectral gap for the parameterized Hamiltonian.

For the proportionality factor of |kAkB〉int to be true for small interactions,
which is far more radical, it is required that there are nonzero spectral gaps,
for some s > 0, at each momentum eigenstate of momenta kA and kB , and
there are no other nearby eigenvalues that may be mistaken for the incoming
momenta. In practice, these incoming particles can create bound states, for
example, and make this distinction difficult. If all of this is justifiable, and

we accept the proportionality |kAkB〉int ∝ limt→∞ e−iĤt |kAkB〉0, then we can
create equalities and proportionalities, although difficult, to quantities that we
can actually calculate

lim
t→∞ 0 〈p1 . . .pn| e−ihatH·2t |kAkB〉0 ∝ lim

t→∞ 0 〈p1 . . .pn| T [e−i
∫ t
−t Ĥint(t

′)dt′ ] |kAkB〉0
(291)

This is exactly the same as the argument for the Dyson series expansion for G(n)

with the vacuum states, and, just as in that case, the proportionality difficulty
can be eliminated, and we have the following (not yet justified) equality

〈p1 . . .pn| iT̂ |kAkB〉 = lim
t→∞

(
0 〈p1 . . .pn| T [e−i

∫ t
−t Ĥint(t

′)dt′ ] |kAkB〉0
)

connected,

amputated

(292)
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The condition of ”connected, amputated” is analogous to ”connected” as in the
G(n) case.

We can begin to justify this equality through some calculations. Consider the
O(1) term, corresponding to the identity operator in S = I + iT̂, for the 2→ 2
scattering process.

out 〈p1p2|kAkB〉in =O(1) 0 〈p1p2|kAkB〉0 (293)

=
√

2ωp1ωp2 · 2ωkAωkB 〈0| âp1 âp2 â
†
kA
â†kB |0〉 (294)

= 2ωA · 2ωB(2π)6(δ(p1 − kA)δ(p2 − kB) + δ(p1 − kB)δ(p2 − kA))
(295)

Figure 23: Diagram of the O(1) term as calculated above.

The next term to O(λ), applying Wick’s theorem, and retaining all contractions,
since we are not just working with the vacuum state anymore,

〈p1p2| iT̂ |kAkB〉 =O(λ) 0 〈p1p2| T [
−iλ
4!

∫
d4x φ̂4

I(x)] |kAkB〉0 (296)

= 0 〈p1p2| N [
−iλ
4!

∫
d4x φ̂4

I(x) + all

contractions
] |kAkB〉0 (297)

To see what kinds of terms that survive to order λ, consider the interacting
creation field operator interacting with the free four-momentum eigenstate

φ̂†I(x) |p〉0 =

∫
d3k

(2π)3

1√
2ωk

e−ik·xâk |p〉 (298)

=

∫
d3k

(2π)3

1√
2ωk

e−ik·xâk ·
√

2ωpâ
†
p |0〉 (299)

=

∫
d3k

(2π)3

1√
2ωk

e−ik·x · (2π)3δ(3)(k − p)
√

2ωp |0〉 (300)

φ̂†I(x) |p〉0 = e−ip·x |0〉 . (301)

To deal with momentum eigenstates, such as |kAkB〉, include them in extended
contractions by defining

φ̂†I(x)|p〉 = e−ip·x (302)

〈p|φ̂†I(x) = eip·x (303)
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Now, we can prove (Exercise) an extended version of Wick’s theorem, where
the time-ordered product of field operators in the presence of incoming and out-
going momentum eigenstates is equal to the sum over all possible contractions,
including contractions of the field operators with the states as well.

0 〈p1 . . .pn| T [field operators] |k1 . . .kn〉0 =
∑

all possible full contractions

including momentum eigenstates
(304)

This allows us to approximate the S-matrix transition amplitudes, justified up
to the assumption about momentum eigenstates in the free theory being related
to momentum eigenstates in the interacting theory.
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13 Lecture 13: Feynman Diagram Expansions
in ϕ4 Theory

In overview, thus far we have take a progression of reasonable, small steps to
building a relativistic quantum field theory. We established Lorentz invariance
as a symmetry of the theory, which may not quite be a fundamental symme-
try of nature, but has not been violated by any experiments to date. Next,
we established a unitary representation of the Poincaré group (difficult since
the Poincaré group is not compact, unlike rotation groups), where space and
time can transform into other via Lorentz boosts, meaning that energy and mo-
mentum can also exchange roles under Poincaré symmetries. This also causes
difficulties in writing down quantum mechanical Hamiltonians that behave ap-
propriately, but, fortunately, we can invoke locality in the theory, which is also
seemingly fundamental to nature. Motivated by classical examples, such as the
Klein-Gordon equation, a free theory, we write the relativistic quantum field
theory, namely the quantum Klein-Gordon field, by ”just putting hats” on the
operators, and it worked.

To account for interactions, we added a perturbative ϕ4 term to the quantum
Klein-Gordon Hamiltonian

ĤKG → ĤKG + Ĥϕ4 (305)

Where Ĥϕ4 is Lorentz invariant, but is also an unbounded operator on any

Hilbert space, such that ||Ĥϕ4 || → ∞. Though this is not mathematically rigor-
ous, our forefathers and foremothers have shown through physical rigor, as well
as time and time again by using tools outside of the realm of their mathematical
applicability, that this is an acceptable perturbative term to account for field
interactions.

Examples of Mathematically Non-Rigorous Applications

• The building block of perturbation theory assumes that the interacting
theory vacuum state is proportional to the free theory vacuum state via
the time-evolution operator of the interacting theory

|Ω〉 ∝ limt→∞ e−iĤϕ4 t |Ω0〉.

– Even for finite dimensional systems, this limit does not exist and
is oscillatory. The limit can make sense for Hamiltonians with a
continuous spectra with a few particles.

• The momentum eigenstates require preparation of delta functions in the
momenta, and are assumed to be related similar to the vacuum states

|p1 . . .pn〉 = limt→∞ e−iĤϕ4 t |p1 . . .pn〉0.
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• The Dyson series, a Taylor expansion of the interacting theory time evo-
lution operator can not be expected to converge

e−iĤϕ4 t = e−iĤKGt − i
∫ t

0
dt′ e−iĤKGt

′
ĤIe

iĤKGt
′
+ . . . .

We are often punished by infinities, where we would prefer finite numbers. Some
infinities are trivially removable with no operational consequence, such as the
ground state energy shift in the Klein-Gordon theory, such that E0 → E0 +∞
. Other infinities can be factored away by rescaling observables, such as in the
case of vacuum bubbles (e.g., ∞∞ = 1). Yet other infinities just don’t go away,
such as in the diagram of two internal vertices.

Perhaps the choice of interaction terms is the cause of all of these infinities, and
we can impose a cutoff to the theory that will eliminate some infinities. For
example, in the ϕ4 theory

Ĥϕ4 → Ĥϕ4(Λ) (306)

Where Λ is a cutoff up to some family of models/theories, and the norm of the
cutoff Hamiltonian is proportional to the cutoff, which may be large, but not
infinity, such that ||Ĥϕ4(Λ)|| ∝ Λ.

For example, consider the quantum harmonic oscillator cutoff, where ||Ĥ(N)|| =
N

Ĥ =

∞∑
n=0

(n+
1

2
) |n〉 〈n| → Ĥ(N) =

N∑
n=0

(n+
1

2
) |n〉 〈n|+

∑
n>N

(N+
1

2
) |n〉 〈n| (307)

The major concern with imposing cutoffs is whether observables depend on the
cutoff or not. To eschew this issue, we allow unobservable parameters, coupling
constants, to shift and absorb all the cutoff dependence.

Renormalization

This practice is called renormalization, and it works. We make the hypothesis
that the Hamiltonian depends on some number of parameters, called coupling
constants, such that Ĥ = Ĥ(z1, . . . , zn). The mapping from the coupling con-
stants to observables is not expected to be, and is usually not, bijective. For
example,

Ĥϕ4(λ,m) =

∫
d3x

(
∇2φ̂+m2φ̂2 +

λ

4!
φ̂4

)
(308)

This Hamiltonian corresponds to a list of observablesOj(z1, . . . , zn), j = 1, 2, . . . ,
with complicated (nonlinear) dependencies with the coupling constants, which
usuaslly exist on a smooth manifold before mapping to observables.

For example, consider the spectral gap O = E1 − E0, where O = O(z1 +
c, z2, . . . , zn), and Ĥ = z1 · I + Ĥ ′(z2, . . . , zn).
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Add the cutoff dependence to the observables, such that

ĤΛ(z1, . . . , zn)→ Oexpt. = Oj(z1, . . . , zn; Λ) (309)

If ”lucky”, each of the coupling constants can absorb all of the Λ-dependence,
and none of the observables will depend directly on the cutoff

Oexpt. = Oj(z1, . . . , zn; Λ) = Oj(z1(Λ), . . . , zn(Λ)). (310)

If the above is true, then the theory is renormalizable, and is now defined by
a highly overdetermined set of equations, such that there are a finite number
of parameters zi and an infinite list of equations (observables) Oj to solve.
Renormalizable theories effectively have no cutoff, since the remaining infinities
are eliminated by changing the order of limits.

1. Take the limit as the cutoff tends to infinity, Λ → ∞, then compute
observable quantities.

2. Vice versa.

Typical Terms in Scattering Experiments

Scattering experiments generate interaction terms such as the following

0 〈p1p2 . . . pn| T [
λ

4!

∫
d4x φ̂4

I(x)] |qAqB〉0 . (311)

Apply (generalized) Wick’s theorem to calculate the contractions, and sum over

three types of terms (to order λ) encountered. Note that φ̂I(x) = φ̂ in the

following. Wick’s theorem applied to T [φ̂4(x)] yields a sum over the normal
ordering of all of the following contractions, such that

T [φ̂4(x)] = fully contracted + partially contracted + uncontracted (312)

Fully contracted : N [φ̂φ̂φ̂φ̂] + other fully contracted

Partially contracted : N [φ̂φ̂φ̂φ̂+ φ̂φ̂φ̂φ̂] + other partially contracted

Uncontracted : N [φ̂φ̂φ̂φ̂].

The diagrammatic contributions to the integrals from each type of contracted
term to the S-matrix have the following forms (for the n = 2 case)

Type 1, fully contracted:

−iλ
4!

∫
d4x 0 〈p1p2| φ̂φ̂φ̂φ̂ |qAqB〉0 = (313)
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Figure 24: Diagrammatic contributions of fully contracted terms: a product of
fully connected diagrams, from four copies of the field operator (figure eight),
and delta functions imposing a sort of momentum conservation.

The full contraction is just a C number, making the integral over the inner
product of momentum eigenstates.

Type 2, partially contracted:

−iλ
4!

∫
d4x 0 〈p1p2| φ̂φ̂N [φ̂φ̂] |qAqB〉0 =

−iλ
4!

∫
d4x ( (1) + (2) + (3) ) (314)

The partial contractions have three more types of normal orderings, as labelled
above: (1) + (2) + (3)

1. Right: φ̂φ̂ 0 〈p1p2| φ̂φ̂ |qAqB〉0 + all other contractions to the right.

2. Left: φ̂φ̂ 0 〈p1p2| φ̂φ̂ |qAqB〉0 + all other contractions to the left.

3. Both: φ̂φ̂ 0 〈p1p2| φ̂φ̂ |qAqB〉0 + all other contractions one left and one
right.
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Figure 25: Diagrammatic contributions of partially contracted terms.

Note that the contraction of the interacting field operators and the momentum
eigenstates, as in the three cases above, contribute incoming/outgoing momenta,
a vertex, and three external legs.

Figure 26: Diagrammatic contributions of contractions between intertacting
field operators and momentum eigenstates.

Type 3, uncontracted:

−iλ
4!

∫
d4x 0 〈p1p2| N [φ̂φ̂φ̂φ̂] |qAqB〉0 =

−iλ
4!
· 4! ·

∫
d4xe−i(qA+qB−p1−p2)·x

= −iλ(2π)4δ(4)(qA + qB − p1 − p2)

= Diagram below.

68



Figure 27: Uncontracted term contributes diagram that enforces momentum
conservation.

Adding all of the terms together in the full expansion of the interacting compo-
nent of the S-matrix, namely 0 〈p1p2| iT̂ |qAqB〉0, we get a series lke the following

Figure 28: Full diagrammatic expansion of the interacting component fo the
S-matrix.

These are the three types of diagrams, with respect to connectedness, that are
always encountered: fully connected, partially connected, and vacuum bubble
times cully connected.
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Figure 29: Three types of connectedness encountered in diagrammatic expan-
sions of the interacting component of the S-matrix.

Vacuum Bubbles and Fully Connected Diagrams

Claim, here without proof, that products of vacuum bubbles and fully connected
diagrams exponentiate, and, further, the only diagrams which contribute to the
S-matrix are the fully connected diagrams. There still exist fully connected dia-
grams (integrals) that result in infinities. To quell these infinities, either impose
a cutoff scale, or argue that such a diagram does not contribute to the S-matrix.
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Figure 30: An example of a fully connected diagram that results in infinity.

External leg corrections may be used to ”amputate” parts of a diagram that
will remove infinities from the external legs. This process represents a projection
from the free momentum eigenstates to the interacting momentum eigenstates,
just as in the projection of the vacuum state |Ω〉. Thus, external leg corrections
factorize the diagram.

|qB〉0 → |qB〉 (315)

Figure 31: Single cuts made from the body of the diagram are called external
leg corrections, and ”amputate” off infinities.

Amputation can not remove all infinities, since it is defined via the external leg
corrections. Self-interactions on internal legs are not removable via amputation.
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Figure 32: An example of an amputation process where not all infinities can be
removed, since it is not on an external leg.

And the final statement of the Feynman rule for the ϕ4 interaction theory reads

iM(2π)4δ(4)(qA + qB −
∑
f

pf ) =

 sum of all connected and
amputated Feynamn diagrams
with incoming momenta qA, qB

and outgoing momenta pf

 (316)
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14 Lecture 14: The Dirac Field

We’ve built a relativistic quantum field theory for the (complex) scalar field,
or spinless particles, around the Klein-Gordon equation and its Lorentz group
invariant, conserved quantities, or the generators of Lorentz transformations
(e.g., boosts and rotations), which obey the Lie algebra bracket

[Jρσ, Jτν ] = ηστJρν − ηρτJσν + ηρνJστ − ησνJρτ . (317)

We now build a relativistic quantum field theory for fermions, particles of spin-
1
2 , which requires a (complex) vector, or spinor, field to describe the dynamics
of the fermionic field. Our strategy is similar to the scalar field case:

• Build a relativistic classical field theory.

• Quantize the field (by guess).

• Check for the (projective) representation of the Lorentz group.

To begin with building the relativistic classical field theory, given a set of objects
obeying the Lie bracket above, we construct a Lagrangian by first constructing
the representation of the Lorentz group via g = e−

i
2ωµνJ

µν

, where ωµν are the
Lorentz boost parameters, and then calculating Lagrangian densities invariant
under the representation g.

Dirac’s Motivation

Dirac desired to factorize the Klein-Gordon equation, and craft an equation
of motion linear in spacetime derivatives ∂µ ≡ ∂/∂xµ, the square root of the
Klein-Gordon equation, such that any solution to the Dirac equation is also a
solution to the Klein-Gordon equation, but not necessarily vice versa. Linearity
in the spacetime derivatives ensures that the associated probability current is
positive definite, and the positive energy solutions may be separated from the
negative energy solutions inherent to solutions of the Klein-Gordon equation.

The Dirac equation, which we will motivate and derive, reads

(iγµ∂µ −m)ψ = 0. (318)

Where the coefficients of the spacetime derivatives iγµ can not be just four
scalar quantities, as the vector of coefficients would then define a direction, and
the Dirac equation would not be Lorentz invariant. The γµ must actually be
4× 4 matrices, and the field ψ must be a four-vector.

To recover the Klein-Gordon equation from the Dirac equation, multiply the
Dirac equation by (iγν∂ν + m), and compare to the Klein-Gordon equation
(∂2 + m2)ψ = 0 to see that the ”squared” Dirac equation becomes the Klein-
Gordon equation if the gamma matrices obey the following anticommutation
relation
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{γµ, γν} = 2ηµν · In×n. (319)

Where ηµν is the Minkowski metric tensor.

Generators of Fermionic Field (Lorentz) Transformations

To calculate the generators of the Lorentz transformations of the fermionic field
(spin- 1

2 particles), suppose that we have that set of 4 n × n matrices γµ that
satisfy the anticommutation relation {γµ, γν} = 2ηµν · In×n. Obtain a solution
in terms of the gamma matrices that obeys the Lie algebra bracket above

Jµν → Sµν ≡ i

4
[γµ, γν ]. (320)

It is an (exercise) to check that these generators obey Lie algebra bracket
above for the Lorentz transformation, and that four dimensions is the minimum
of the gamma matrices dimensionality for nontrivial solutions.

The gamma matrices that correctly form the Lorentz group in (3+1)d spacetime
were crafted by Dirac via the Pauli spin (sigma) matrices

γ0 =

(
0 I
I 0

)
γj =

(
0 σj

−σj 0

)
. (321)

Where the Pauli sigma matrices read

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (322)

The timelike components S0j yield three (j = 1, 2, 3) boost generators of the
Lorentz group (of the Lie algebra above)

S0j =
i

4

[
γ0, γj

]
= − i

2

(
σj 0
0 −σj

)
. (323)

The other six generators from the spacelike components have the form

Sjk =
i

4

[
γj , γk

]
=

1

2
εjkl

(
σl 0
0 −σl

)
(324)

Where the sigma matrices obey the commutation relation: [σj , σk] = 2iεjklσl.

Construction of Gamma Matrices

To build the operators that obey the desired anticommutation relation, and
also form a Clifford algebra, implement the Jordan-Wigner transformation,
which maps the Pauli sigma matrices to fermionic creation and annihilation
operators.
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Jordan-Wigner Transformation

Suppose that you want to represent operators that obey the (fermionic) anti-
commutation relation

{µa, (µb)†} = δab, a, b = 1, 2, . . . , n. (325)

Consider the operator σ+ =

(
0 0
1 0

)
, and the construction of successive oper-

ators which all operate on the same n-dimensional space, permissing the expanse
of n direct products with the unit operator

µ1 = σ+ ⊗ I⊗ I⊗ I⊗ I⊗ · · · ⊗ I
µ2 = σ3 ⊗ σ+ ⊗ I⊗ I⊗ I⊗ · · · ⊗ I
µ3 = σ3 ⊗ σ3 ⊗ σ+ ⊗ I⊗ I⊗ · · · ⊗ I
µ4 = etc. . . .

These µj operators obey the fermioic anticommutation relations, since {σj , σk} =
2δjk, and form a matrix representation of the anticommutation relation given
in the Jordan-Wigner transformation.
An inefficient method to construct a representation of the gamma matrices,
though reducible to the above µj matrices, which honors the anticommutation
relation, starts with the composition of the timelike gamma matrix

γ0 = σ1 ⊗ I. (326)

Next, we know that σ2 anticommutes with σ1 via {σj , σk} = 2δjk, and thus we
construct the following, noting that to satisfy (γj)2 < 0, scalar multiplication
by the imaginary unit i is required

γj ≡ iσ2 ⊗ σj . (327)

The Dirac Spinor

The set of matrices γµ satisfying the anticommutation relation {γµ, γν} =
2ηµν · In×n are called the Dirac matrices, and the four-component object
that transforms correctly under the Lorentz group is called the Dirac spinor

ψ → e−
i
2ωµνS

µν

ψ (328)

This is the definition of the spinor in different reference frames, and defines the
spinor field as a mapping

ψ : R1,3 → C4. (329)

Transforming as

ψa(x) =

3∑
b=0

[Λ1/2]ab ψb(Λ
−1x), Λ ∈ SO(3) (330)
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Where Λ is the usual representation for the Lorentz transformation, and Λ1/2

has the same representation structure and obeys the same Lie algebra of the
Lorentz transformation, but different elements: the 4 × 4 matrix Lie algebra
bracket Sµν built out of the gamma matrices

Λ = e−
i
2ωµνJ

µν

(331)

Λ1/2 = e−
i
2ωµνS

µν

(332)

Every representation of the Lorentz group can be used to build Lorentz invariant
field equations, such that Dψ = 0. To build the field equations for ψa(x), first
guess and check (Exercise) that the Klein-Gordon equation is satisfied

(∂2 +m2)ψa(x) = 0, ∀ a (333)

The next guess, by Dirac, is to find a satisfactory field equation that is linear in
spacetime derivatives. This requires the following identity as an auxiliary com-
putation between the gamma matrices and the two generators, first confirmed
by Dirac (Exercise)

[γµ, Sρσ] = (Jρσ)µν γ
ν (334)

This is reminiscient of how the four-vector transforms under the Lorentz trans-
formation, and we motivatedly write, to first order in ω

(1 +
i

2
ωρσS

ρσ)γµ(1− i

2
ωρσS

ρσ) = (1− i

2
ωρσJ

ρσ)µνγ
ν (335)

e
i
2ωρσS

ρσ

γµe−
i
2ωρσS

ρσ

≈ (e−
i
2ωρσJ

ρσ

)µνγ
ν (336)

Λ−1
1/2γ

µΛ1/2 = Λµνγ
ν (337)

This shows that the gamma matrices transform exactly like a four-vector under
the Lorentz transformation. Contracted against another vector, that transforms
accordinngly, will produce another Lorentz invariant object. The differential op-
erator ∂µ transforms as such, making γµ∂µ Lorentz invariant.

Thus, the Lorentz invariant field equation, the Dirac equation, reads

(iγµ∂µ −m)ψ = 0 (338)

Check the invariance of the Dirac equation by substituting the following quanti-
ties for the spinor and spacetime derivative into the Dirac equation (Exercise)

ψ(x)→ Λ1/2ψ (Λ−1x) (339)

∂µ → (Λ−1)νµ∂ν . (340)
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Making these subsitutions, the Dirac equation becomes(
iγµ(Λ−1)νµ∂ν −m

)
Λ1/2 ψ(Λ−1x) = 0 (341)

Λ1/2Λ−1
1/2 ·

(
iγµ(Λ−1)νµ∂ν −m

)
Λ1/2 ψ(Λ−1x) = 0 (342)

Λ1/2

(
iΛ−1

1/2 γ
µΛ1/2 (Λ−1)νµ∂ν −m

)
ψ(Λ−1x) = 0 (343)

Λ1/2

(
iΛµσγ

σ(Λ−1)νµ∂ν −m
)
ψ(Λ−1x) = 0 (344)

Λ1/2 (iγν∂ν −m)ψ(Λ−1x) = 0 (345)

Going from line 2 to 3 utilizes the fact that (Λ−1)νµ∂ν is a linear operator, mean-

ing the quantity Λ−1
1/2 γ

µΛ1/2 also transforms like a four-vector and is Lorentz

invariant. Going from line 4 to 5 uses the fact that (Λ−1)νµ∂ν ψ(Λ−1x) is a delta
function. The left hand side becomes zero, and the Dirac equation is Lorentz
invariant.

The Dirac equation contains the Klein-Gordon equation

(iγµ∂µ −m)ψ = 0

(−iγν∂ν −m) · (iγµ∂µ −m)ψ = 0

(
1

2
{γµ, γν}∂µ∂ν +m2)ψ = 0

(∂µ∂ν +m2)ψ = 0

(�2 +m2)ψ = 0

The Dirac equation is first order in all four spacetime coordinates, and is thus
a stronger condition imposed on the components of the field ψ.
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15 Lecture 15: The Dirac Equation and its So-
lutions

The Dirac equation (iγµ∂µ −m)ψ = 0 is motivated for us by the question of
the dynamics of fermionic fields, espeically electrons. We introduce a new repre-
sentation of the Lorentz group with intrinsic angular momentum by producing
the gamma matrices γµ, such that the anticommutation relation is satisfied.

{γµ, γν} = ηµν · I (346)

And recall that the gamma matrices contain the Pauli spin matrices and have
the form

γ0 =

(
0 I
I 0

)
γj =

(
0 σj

−σj 0

)
. (347)

This will yield a new Lorentz-invariant equation of motion, and the steps to get
there include

1. Calculating the Hamiltonian denisty from the Lagrangian density and
guessing a quantization.

2. Entering the zero-mass limit, where the equation of motion decouples.

3. Solve the wave equation in the free particle basis.

Recall that the Dirac spinor Lorentz-transforms according to

ψ(x)→ Λ1/2ψ(Λ−1x) (348)

To build the Lagrangian density, we need to define some Lorentz scalars. A
first guess may be to (incorrectly) define the Lorentz scalar as the quantity
ψ†(x)ψ(x), which Lorentz transforms as

ψ†(x)ψ(x)→ ψ†Λ†1/2Λ1/2ψ (349)

The issue with this definition is that the representation of the Lorentz group
can be unitary if it is finite dimensional, and, in general, Λ†1/2Λ1/2 6= I, and Λ1/2

is not unitary. The proper definition of the Lorentz scalar includes a gamma
matrix factor to ensure unitarity.

Define the Lorentz scalar as ψ†(x)γ0ψ(x), and define the quantity ψ̄(x) =
ψ†(x)γ0 to assist in proving that ψ̄ψ is indeed a Lorentz scalar.

Exercise: Prove this using the

Lemma: Λ†1/2γ
0 = γ0Λ−1

1/2.
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Similarly, define the Lorentz vector vµ = ψ̄γµψ.

Therefore, the Lagrangian density for the Dirac field is

LDirac = ψ̄ (iγµ∂µ −m)ψ (350)

Exercise: Prove that LDirac is Lorentz scalar.
Exercise: Apply the Euler-Lagrange equation to obtain the Dirac equation.

Dirac Field Hamiltonian

The conjugate momentum to the Dirac spinor ψ is the quantity iψ†, yielding
the Hamiltonian

H =

∫
d3x ψ̄

(
−iγ · ∇+m

)
ψ (351)

H =

∫
d3x ψ†

(
−iγ0γ · ∇+mγ0

)
ψ (352)

Where the underlined vectors are only the spatial components, such that

γ · ∇ =

3∑
j=1

γj∂j .

And we have the dynamics of a classical Dirac field.

Zero-mass Limit

Let’s see how the Dirac equation and the four-component Dirac spinor decouples
in the zero-mass limit to the two-component Weyl spinors ψL/R(x) ∈ C2.

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

→ (
ψL(x)
ψR(x)

)
(353)

Under the Lorentz transformation, Weyl spinors transform to themselves

ψL → (I− iθ · 1

2
σ − β · 1

2
σ)ψL (354)

ψR → (I− iθ · 1

2
σ + β · 1

2
σ)ψR (355)

Where the rotation and boost three-vectors are, respectively, θ = (θ1, θ2, θ3)
and β = (β1, β2, β3).
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The left-handed spinor ψL contains the right-handed spinor ψR, seen by taking
the complex conjugate and multiplying by σ2, since this causes a spin flip, such
that multiplication by σ2 give the antipode on the Bloch sphere.

σ2σ∗ = −σσ2 (356)

Therefore, the quantity σ2ψ∗L transforms like ψR.

The coupling of the Weyl spinors is represented by the matrix equation (Exercise)

(iγµ∂µ −m)ψ =

(
−m i(∂0 + σ · ∇)

i(∂0 − σ · ∇) m

)(
ψL
ψR

)
= 0 (357)

Now, suppose that m = 0, such that ψL and ψR become two independent
solutions to the Dirac equation, and we obtain a represntation of the Poincaré
group. The equations of motion in the zero-mass limit are then

i(∂0 − σ · ∇)ψL = 0 (358)

i(∂0 + σ · ∇)ψR = 0 (359)

Define the notation

σµ = (1, σ) (360)

σ̄µ = (1,−σ) (361)

Then the gamma matrices become

γµ =

(
0 σµ

σ̄µ 0

)
(362)

And we rewrite the Dirac equations of motion as

i(σ̄ · ∂)ψL = 0 (363)

i(σ · ∂)ψR = 0 (364)

Free Particle Solutions to the Dirac Equation

The Dirac equation is a linear system of partial differental equations (PDEs),
and the solutions may be expressed in terms of plane waves

ψ(x) = e−ip·xu(p) (365)

Where u(p) ∈ C4 and are the zero eigenvectors of the Dirac matrix. Linear
combinations of ψ(x) yield a general solution, with the constraint of on-shell
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momentum, such that p2 = m2, p0 > 0.

Substitute the plane wave solution in to Dirac equation to obtain the matrix
equation

(pµγ
µ −m · I)u(p) = 0 (366)

Now, solving for u(p), enter the rest frame, where p0 = (m, 0), and the matrix
equation becomes(

m

(
0 I
I 0

)
−m

(
I 0
0 I

))(
uL(p0)
uR(p0)

)
= 0 (367)

And solutions are of the form

uL(p0) = uR(p0) =
√
mξ (368)

Where ξ fixed, with normalization ξ†ξ = 1. Then the solution in the rest frame
is

ψs(x) = e−ip·xus(p0) =
√
m

(
ξs

ξs

)
e−ip·x (369)

Where s = 1, 2, and we may write ξ1 =

(
1
0

)
and ξ2 =

(
0
1

)
.

The solution in a general reference frame is obtained via the spinor represen-
tation of the Lorentz boost Λ. To calculate the spinor representation of the
Lorentz boost along any three-direction, recall that, for rapidity η

Λ = cosh(η) · I + sinh(η) ·


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (370)

= e−i
1
2ωµνJ

µν

(371)

Λ = e−i
1
2ω03J

03

(372)

Where Jµν obey the Lie algebra of the Lorentz group, ωµν are the 6 boost
parameters, and ω03 = 2η is the only nonzero term (Exercise).
To apply this transformation on the spinor, apply the matrix

Λ1/2 = e−
i
2ω03S

03

(373)

= e−
i
2 ·2η·

i
4 [γ0, γ3] (374)

=

(
e−

1
2ησ

3

0

0 e
1
2ησ

3

)
(375)
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So, in the general reference frame, p = Λp0, the solutions have the form
(Exercise)

ψ(x) = e−ip·xus(p = Λp0) (376)

=
√
m

(
e−

1
2ησ

3

ξs

e
1
2ησ

3

ξs

)
e−ip·x (377)

=

( √
p · σξs√
p · σ̄ξs

)
e−ip·x (378)

Where we used (p · σ)(p · σ̄) = m2 = p2, and we have two linearly independent
solutions to the Dirac equation, but we need four solutions per given momentum.
The other two solutions come from the plane wave ansatz for the negative
frequency solutions.

ψnegative(x) = v(p)eip·x (379)

Similar to the positive frequency case, there are two linearly independent solu-
tions

ψnegative(x) = eip·xvs(p) (380)

=

( √
p · σξs

−
√
p · σ̄ξs

)
eip·x (381)

To normalize these states, recall that ψ̄ψ is Lorentz invariant, with ψ(x) =
us(p)e−ip·x, such that

ψ̄ψ = ūs(p)us(p) = 2m(ξs)†ξs (382)

And more generally, for both positive and negative frequency solutions

ψ̄ψ = ūr(p)us(p) = 2mδrs (383)

ψ̄negativeψnegative = v̄r(p)vs(p) = −2mδrs (384)

And for mixed positive-negative frequency solutions, the normalization is zero

ūr(p)vs(p) = v̄r(p)us(p) = 0 (385)

There we have four linearly independent solutions to the (classical) Dirac equa-
tion in a general reference frame.
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16 Lecture 16: The Quantum Dirac Field

In the last lecture we found plane wave solutions to the classical Dirac equation.
Now, we will guess a (quadractic) quantum theory that begins with the plane
wave solutions of an effective classical theory in its large scale, low energy, high
decoherence limit. The classical theory we make our guess has the Lagrangian
density

L = ψ̄(i/∂ −m · I)ψ = ψ̄(iγµ∂µ −m · I)ψ (386)

As a side note, the space of quantum theories is an abstract category constrained
by unitary transformations (morphisms) and Hilbert space (objects).

First, a demonstration of how not to quantize the Dirac field.

Bosonic approach to quantization (the wrong way)

Suppose that we guess that the quantum Dirac field is a theory of many bosons,
such that the equal-time commutation relation imposed on the field operators
(note the hats), with spinor indices a, b = {1, 2, 3, 4}, is

[ψ̂a(x), ψ̂b(y)] = δ(3)(x− y)δab. (387)

Use plane wave basis to expand the field operators and define creation/annihilation
operators to act on momentum states, building a Fock space with basis

us(p)eip·x vs(p)e−ip·x. (388)

The field operators are then Fourier transforms into coordinate space

ψ̂(x) =

∫
d3p

(2π)3

1√
2ωp

eip·x
2∑
s=1

(
âspu

s(p) + (b̂s−p) † vs(−p)
)
. (389)

Then the creation/annihilation operators are defined and they obey the com-
mutation relations

[ârp, (b̂
s
q)
†] = [b̂rp, (b̂

s
q)
†] = (2π)3δ(3)(p− q)δrs. (390)

And the quantized Hamiltonian is (Exercise)

Ĥ =

∫
d3p

(2π)3

2∑
s=1

ωp

(
(âsp)

†âsp − (b̂sp)
†b̂sp

)
+∞ const. (391)

This Hamiltonian creates infinite bosons tor each infinitely lower energies and
is not bounded below, and thus has no ground state; it is unstable.
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Fermionic approach to quantization (the right way)

To correctly quantize the Dirac field, we impose equal-time anticommutation
relations

{ψ̂a(x), ψ̂†b(y)} = δ(3)(x− y)δab (392)

{ψ̂a(x), ψ̂b(y)} = 0 (393)

{ψ̂a
†
(x), ψ̂†b(y)} = 0 (394)

Again expand the field operators over momentum space via the Fourier trans-
form

ψ̂(x) =

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

)
(395)

ˆ̄ψ(x) =

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspū

s(p)eip·x + (b̂sp)
†v̄s(p)e−ip·x

)
. (396)

So, the anticommutation relations then require that

{ârp, (âsq)†} = {b̂rp, (b̂sq)†} = (2π)3δ(3)(p− q)δrs. (397)

And all other brackets are zero.

The quantized Hamiltonian is

Ĥ =

∫
d3p

(2π)3

2∑
s=1

ωp

(
(âsp)

†âsp + (b̂sp)
†b̂sp

)
+∞ const. (398)

Which is almost the same Hamiltonian as the bosonic approach, but note the
additional minus sign in the acreation/annihilation operator quantity. This
Hamiltonian is a positive operator, such that Ĥ ≥ 0 for all possible states, with
a unique ground state |Ω〉, such that

âsp |Ω〉 = b̂sp |Ω〉 = 0 (399)

Therefore, this is the correct quantization of the Dirac field!

So far we have a Hilbert space and a time translation generator, (Hamiltonian)
but to call this a relativistic quantum field theory we need all 10 operators to
be Lorentz invariant: spatial translation (linear momentum), rotation (angular
momentum), and boost operators.
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Momentum operators of the Dirac field

The momentum operators, the generators of spatial translation, for the Dirac
field are

p̂j =

∫
d3x ψ̂†(x)(−i∇j)ψ̂(x) (400)

=

∫
d3p

(2π)3

2∑
s=1

(
pj

(
(âsp)

†âsp + (b̂sp)
†b̂sp

))
(401)

Note that the operators and values p̂j , ∇j , and pj are 3-vectors, such that,
for example, p̂j = (p̂1, p̂2, p̂3) = (p̂x, p̂y, p̂z), and the j subscript denotes a single
particle. The first line’s integrand in the momentum density gotten by Noether’s
theorem.
(Exercise) Check that the required commutation relations hold, such that
[p̂j , Ĥ] = 0.

Now, the operators (âsp)
† and (b̂sp)

† create particles of energy ωp and momentum
pj , suppressing the j subscript on the subscripted p, since (Exercises)

Ĥ(âsp)
† |Ω〉 = ωp(â

s
p)
† |Ω〉 (402)

p̂j(â
s
p)
† |Ω〉 = pj(â

s
p)
† |Ω〉 (403)

The sytematic, algorithmic way of obtaining the full unitary representation of
the Poincaré group is to get the generators of the Lie algebra of the Lorentz
group from Noether’s theorem, put hats on them, and check the required com-
mutation relations.

A less systematic way of obtaining the representation is done by introducing
the “normalized” single-particle states

|pj , s〉 =
√

2ωp(â
s
p)
† |Ω〉 (404)

With the “normalization” condition

〈pj , r|qk, s〉 = 2ωp(2π)3δ(3)(pj − qk)δrs. (405)

Then the unitary representation of the Lorentz group is defined via

U(Λ)âspU
†(Λ) =

√
ωΛp

ωp
âsΛp (406)

U(Λ)b̂spU
†(Λ) =

√
ωΛp

ωp
b̂sΛp. (407)
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Note that since we are dealing on equal-time and the Lorentz transformation Λ
acts on 4-vectors, the subscripted product Λp means to just the three spatial
components from the transformation Λ · (ωp, px, py, pz).

Now this gives us the full unitary representation of the Poincaré group since the
Fock space is generated by products of the creation/annihilation operators on
the vacuum state and the action is just extended to all of Fock space.

So we know how the Lorentz transformation acts on creation/annihilation oper-
ators. How does the Lorentz transformation act on the quantized Dirac (spinor)
field operators?

U(Λ)ψ̂(x)U†(Λ)

= U(Λ)

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

)
U†(Λ)

=

∫
d3p

(2π)3

1

2ωp

√
2ωp

2∑
s=1

(√
ωΛp

ωp

(
âsΛpu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

))
.

Recall that the quantity
∫

d3p
(2π)3

1
2ωp

is a Lorentz invariant measure, such that

we can change basis and freely apply Lorentz transformations to the variable of
intergration; let p̃ = Λp. Then (Exercise)

U(Λ)ψ̂(x)U†(Λ)

=

∫
d3p̃

(2π)3

1

2ωp̃

√
2ωp̃

2∑
s=1

(
âsΛp̃u

s(Λ−1p̃)e−ip̃·Λ
−1x + (b̂sp̃)

†vs(Λ−1p̃)eip̃·Λ
−1x
)

= Λ1/2ψ̂(Λ−1x).

So, we have taken an ad hoc definition of the creation/annihilation operators to
construct the quantum field operators, and they Lorentz-transform according
to the above; very nice!

Angular momentum operators of the Dirac field

The angular momentum operators, the generators of rotation, for the Dirac field
classically transform by infinitesimal rotations

ψ(x)→ Λ1/2ψ(Λ−1x) (408)

Where the infinitesimal rotation Λ1/2 is

Λ1/2 ≈ I− i

2
ωµνS

µν = I− i

2
θ

(
σ3 0
0 σ3

)
= I− i

2
θΣ3 (409)
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The infinitesimal rotation of a spinor is calculated by first applying Taylor’s
theorem to first order

δψ(x) = ψ′(x)− ψ(x) (410)

= (I− i

2
θΣ3)ψ(t, x+ θy, y − θx, z)− ψ(x) (411)

= −θ(x∂y − y∂x+
i

2
Σ3)ψ(x) (412)

≡ θ∆ψ(x) (413)

Now apply Noether’s theorem, recalling that the time component of the con-
served current due to rotation is

j0 =
∂L

∂(∂0ψ)
∆ψ = −iψ̄γ0(x∂y − y∂x+

i

2
Σ3)ψ. (414)

By the “inverse” Noether’s theorem, integrate the current over coordinate space
to get the generators of rotations, the angular momentum operators, where we
get an orbital contribution (wedge or corss product) and a spin contribution
(Σ-matrix), with k = x, y, z,

Jk =

∫
d3x ψ†(x)

(
[x ∧ (−i∇)]k +

1

2
Σk
)
ψ(x). (415)

Then the quantum generator of rotations gets a hat, and we have included all
three directions of rotation, such that Ĵ is a vector of three operators

Ĵ =

∫
d3x ψ̂†(x)

(
x ∧ (−i∇) +

1

2
Σ

)
ψ̂(x). (416)

Note that the angular momentum are not easy to write in terms of the cre-
ation/annihilation operators.
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17 Lecture 17: The Quantum Dirac Field, Con-
tinued

Recall that fermionic degrees of freedom are described by the quantum field
operator

ψ̂(x) =

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

)
. (417)

These observable, distribution-valued operators obey the anticommutation re-
lations

{ψ̂a(x), ψ̂†b(y)} = (2π)3δ(3)(x− y)δab. (418)

With this definition, it was postulated that the Hamiltonian is quadratic in the
creation-annihilation operators

Ĥ =

∫
d3p

(2π)3

∑
s

ωp

(
(âsp)

†âsp + (b̂sp)
†b̂sp

)
. (419)

This Hamiltonian is a positive operator Ĥ ≥ 0 and has a stable vacuum (ground)
state |Ω〉, such that

âsp |Ω〉 = b̂sp |Ω〉 = 0. (420)

We postulated the generators of rotations, the angular momentum operators,
based on the classical analog and the “inverse” Noether’s theorem, to be

Ĵ =

∫
d3x ψ̂†(x)

(
x ∧ (−i∇) +

1

2
Σ

)
ψ̂(x) (421)

Where we recall that each of the quantities Ĵ , x, ∇, and Σ consist of an operator
for each spatial dimension x, y, and z.

The next part of our job is to (Exercise) check that all of these operators, Ĵ ,
p̂, and boost, the generators of the Poincaré group, obey the correct commu-
tation relations and are Lorentz invariant. In other words, they close to form
the Lie algebra of the Poincaré group. This is considerably difficult since these
operators are unwieldy in terms of the creation/annihilation operators â and b̂.
See Weinberg Volume 1 for calculations of the Lie brackets of the Dirac field.

We instead check that the fundamnetal excitations of the DIrac field have spin-
1
2 , which is a weaker assertion than the commutation and Lorentz invariance of
the generators, but of interest, nonetheless.
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Spin of a Dirac particle at rest

Consider the angular momentum operator acting on one of its eigenstates

Ĵ(âsp=0)† |Ω〉 = [Ĵ , (âs0)†] |Ω〉 (422)

=

∫
d3x

[
ψ̂†(x)

(
x ∧ (−i∇) +

1

2
Σ

)
ψ̂(x), (âs0)†

]
|Ω〉 (423)

=

∫
d3x ψ̂†(x)

(
x ∧ (−i∇) +

1

2
Σ

)
{ψ̂(x), (âs0)†} |Ω〉 (424)

=

∫
d3x ψ̂†(x)

(
x ∧ (−i∇) +

1

2
Σ

)
1√
2m

us(p = 0) |Ω〉 (425)

=

∫
d3x ψ̂†(x)

1√
2m

1

2
Σus(p = 0) |Ω〉 (426)

Where line 107-108 uses the commutation identity

[AB,C] = ABC − CAB = A{B,C} ⇐⇒ {A,C} = 0 (427)

Line 108-109 uses the anticommutation identity (Exercise)

{ψ̂(x), (âsp=0)†} =
1√

2ωp=0

us(p = 0) =
1√
2m

us(p = 0) (428)

And Line 109-110 results since the spatial derivative ∇ acts on us(p = 0) (4× 1
spinor) which is only the dependent on the time component.

Continuing the calculation with the identity (Exercise)∫
d3x ψ̂†(x) =

1√
2m

(
(âs0)†(us(0))† + (b̂s0)†(vs(0))†

)
(429)

And (Exercise)

(vr(0))†(
1

2
Σus(0)) = 0, ∀r, s (430)

We have

Ĵ(âsp=0)† |Ω〉 =

∫
d3x ψ̂†(x)

1√
2m

1

2
Σus(p = 0) |Ω〉 (431)

=
1√
2m

(
(âs0)†(us(0))† + (b̂s0)†(vs(0))†

) 1√
2m

1

2
Σus(p = 0) |Ω〉

(432)

=

2∑
r=1

(
(ur(0))†Σj

1

2

1√
2m

us(0)

)
(âr0)† |Ω〉 (433)
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Consider the j = z component and the identity ūu = 2m

Ĵz(âsp=0)† |Ω〉 =

2∑
r=1

(
(ξr)†

1

2
σzξs

)
(âr0)† |Ω〉 (434)

= (−1)s−1 1

2
(âr0)† |Ω〉 (435)

Thus, the eigenvalue of the operator Ĵz on its eigenstate (âsp=0)† |Ω〉 is equal to

(−1)s−1 1
2 .

Solving the Dirac field

Now we direct our attention to solving the Dirac field via propagators and Wick’s
theorem. This results is the vacuuum expectation values of products of four-
dimensional fermionic field operators, denoted by spinor subscript a, b = 1, 2, 3, 4
and boldfaced spacetime coordinate ψ̂a(x), x = (t, x) = (t, x, y, z), in terms of
Green’s functions and Feynman propagators. Note that spatial coordinate and
momentum vectors are still denoted by non-boldfaced letters: x = (x, y, z),
p = (px, py, pz).

〈Ω| ψ̂a(x) ˆ̄ψb(y) |Ω〉 =

∫
d3p

(2π)3

1

2ωp

2∑
s=1

usa(p)ūsb(p)e
−ip·(x−y) (436)

= (i/∂x +m)ab

∫
d3p

(2π)3

1

2ωp
e−ip·(x−y) (437)

(438)

Similarly (Exercise),

〈Ω| ˆ̄ψb(y)ψ̂a(x) |Ω〉 = (−i/∂x +m)ab

∫
d3p

(2π)3

1

2ωp
e−ip·(y−x). (439)

Spinor field solution to Schroedinger’s equation

In order to make sense of these vacuum expectation values, consider the equal-
time field operator

ψ̂(x) =

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

)
. (440)

Using the following commutation relations
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[Ĥ, âsp] = ωpâ
s
p (441)

[Ĥ, (b̂sp)
†] = −ωp(b̂sp)† (442)

Add time dependency to the field operator, such that

ψ̂(x) = ψ̂(t, x) =

∫
d3p

(2π)3

1√
2ωp

2∑
s=1

(
âspu

s(p)e−ip·x + (b̂sp)
†vs(p)eip·x

)
. (443)

Combinations of advanced and retarded Green’s functions make up the Feynman
propagator. For example, construct the retarded Green’s function

Sretab (x− y) = θ(x0 − y0) 〈Ω| {ψ̂a(x), ˆ̄ψb(y)} |Ω〉 (444)

= (i/∂x +m)Dret(x− y) (445)

Where /∂ /∂ = � is used to relate back to the bosonic propagator Dret (Exercise).

Another way to solve for the fermionic Feynman propagator is to use the Fourier
transform (Exercise)

(i/∂x −m)Sret(x− y) = iδ(4)(x− y) · I4×4 (446)

↓ (447)∫
d4p

(2π)4
(/p−m)e−ip·(x−y)S̃ret(p) =

∫
d4p

(2π)4
eip·(x−y). (448)

Therefore, in Fourier space, the retarded Green’s function is

S̃ret(p) =
i

/p−m
=
i(/p+m)

/p
2 −m2

=
i(/p+m)

p2 −m2
. (449)

Making combinations of S̃ret(p) and S̃adv(p), define the Feynman propagator

SF (x− y) = 〈Ω| T [ψ̂(x) ˆ̄ψ(y)] |Ω〉 (450)

= lim
ε→0

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + iε
e−ip·(x−y) (451)
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18 Lecture 18: Quantum Field Theory for In-
teracting Fermions and Bosons

The building blocks of a quantum field theory are the observables, n-point
Green’s functions in the Heisenberg picture

G(n)
α (x1, . . . ,xn) ≡ 〈Ω| T [Φ̂α1

(x1) . . . Φ̂αn(xn)] |Ω〉 (452)

Where |Ω〉 is the full interacting vacuum state and α is a vector denoting all
relevant quantum fields.
For example, in a theory of scalar bosons and fermions the field operators may
be labeled as

Φ̂0(x) = φ̂(x) for a scalar boson

Φ̂α(x) = ψ̂α(x) for a Dirac spinor, α = 1, 2, 3, 4

We make predictions perturbatively by the general form of the Hamiltonian
Ĥ = Ĥfree + Ĥint, where Ĥfree just contains independent copies of the bosonic

and fermionic fields, and Ĥint contains cross-terms.

For example, we may have the following free Hamiltonian combining the Klein-
Gordon and Dirac fields.

Ĥfree = ĤKG + ĤDirac (453)

=

(
1

2

∫
d3x π̂2(x) +m2φ̂2(x) + (∇φ̂(x))2

)
+

(∫
d3x ψ̂†(−iγ0γ · ∇+mγ0)ψ̂

)
.

(454)

And the interacting Hamiltonian with bosons interacting via the φ4 interaction
and bosons and fermions interacting via the second term (Yukawa theory) con-

taining the simplest Lorentz-invariant Dirac spinor quantity ˆ̄ψψ̂ (Lorentz scalar
from the Lagrangian density). Note that if φ4 is the only interaction, everything
decouples.

Ĥint =

∫
d3x

λ

4!
φ̂4(x) + gφ̂(x) ˆ̄ψ(x)ψ̂(x) (455)

Recall that the equation used to solve for G(n) is

G(n)
α (x1, . . . ,xn) =

〈0| T [Φ̂α1
(x1) . . . Φ̂αn(xn)S] |0〉
〈0| S |0〉

(456)

Which uses the scattering matrix S = limt→∞ U(t,−t) (see Lecture 8), which
can be expanded perturbatively via the Dyson series

92



U(t,−t) = I− i
∫ t

−t
dt′Ĥint(t

′) + (−i)2

∫ t

−t
dt′
∫ t′

−t′
dt′′Ĥint(t

′)Ĥint(t
′′) + . . . .

(457)
After substituting the Dyson series for the scattering matrix, the correlation
function is calculated order-by-order, which runs into infinities. We therefore
introduced the cutoff for the interacting Hamiltonian up to some scale Λ

Ĥint → Ĥint(Λ). (458)

After all, terms in the series for G(n) are time-ordered products of the field
operators in the interaction picture 〈0| T [Φ̂(z1) . . . Φ̂(zm)] |0〉 and integrals over
z1, . . . , zm, where Wick’s theorem is used to evaluate the time-ordered product.
We now generalize Wick’s theorem to fermionic (spinor) field operators.

Wick’s Theorem for Fermions

Define the time-ordering symbol for fermionic field operators with spinor labels
α, β = 1, 2, 3, 4, and note that the product of the two field operators is actually
16 operators in total.

T [ψ̂α(x) ˆ̄ψβ(y)] =

{
ψ̂α(x) ˆ̄ψβ(y), x0 ≥ y0

− ˆ̄ψβ(y)ψ̂α(x), x0 < y0
(459)

Recall the Feynman propagator calculated from the time-ordered products con-
tains 16 numbers in total. For two fermionic field operators we can define the
time-ordering as

SαβF =

∫
d4p

(2π)4

i(/p+m · I)αβ
p2 −m2 + iε

e−ip·(x−y) ≡ 〈0| T [ψ̂α(x) ˆ̄ψβ(y)] |0〉 ≡ ψ̂(x) ˆ̄ψ(y).

(460)
Now we generalize T [] to many fermionic field operators

T [ψ̂(x1) . . . ψ̂(xn)] = (−1)sgn(π)ψ̂(xπ−1(1)) . . . ψ̂(xπ−1(n)) (461)

Where x0
π−1(1) > · · · > x0

π−1(n), for π ∈ Sn the symmetric group.

To prove Wick’s theorem and produce a workable form of the equation, the base
case of Wick’s theorem for fermions starts with two field operators, relating the
time-ordered product to the normal-ordered product and the Wick contraction

T [ψ̂(x) ˆ̄ψ(y)] = N [ψ̂(x) ˆ̄ψ(y)] + ψ̂(x) ˆ̄ψ(y). (462)

Explicitly, the Wick contraction can be written in terms of the anticommutation
brackets for positive and negative frequencies (antiparticles) and related to the
Feynman propagator (Exercise)
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ψ̂(x) ˆ̄ψ(y) = SF (x− y) =

{
{ψ̂+(x), ˆ̄ψ−(y)}, x0 ≥ y0

{ ˆ̄ψ+(y), ψ̂−(x)}, x0 < y0.
(463)

For “non-mixed“ field operators, the Wick contraction is zero

ψ̂(x)ψ̂(y) = ˆ̄ψ(x) ˆ̄ψ(y) = 0. (464)

Now we extend the normal ordering principle to account for operator inter-
change, since each interchange of fermionic field operators introduces a minus
sign to the product. For example,

N [ψ̂1ψ̂2
ˆ̄ψ3

ˆ̄ψ4] = (−1)ψ̂1
ˆ̄ψ3N [ψ̂2

ˆ̄ψ4] = (−1)SF (x1 − x3)N [ψ̂2
ˆ̄ψ4]. (465)

WIth this, we extrapolate to the full Wick’s theorem, which will be the same
as the bosonic case except for minus signs introduced from moving contracted
operators next to each other, for fermionic field operators that allows us to
calculate time-ordered products of n field operators in terms of the normal-
ordered sum of all possible Wick contractions, and, in turn, in terms of Feynman
propagators

T [ψ̂1
ˆ̄ψ2 . . . ] = N [ψ̂1

ˆ̄ψ2 · · ·+ “all possible contractions”]. (466)

Schematic of Perturbative QFT Calculation

Begin with the observables and relate them to field operators in the interaction
picture

G(n)
α (x1, . . . ,xn) =

〈0| T [Φ̂α1
(x1) . . . Φ̂αn(xn)S] |0〉
〈0| S |0〉

(467)

Apply the Dyson expansion to the scattering matrix, and then apply Wick’s
theorem

G(n)
α (x1, . . . ,xn) = I +

∫
dz Φ̂(z)Φ̂(z) +

∫ ∫
dz Φ̂(z)Φ̂(z)Φ̂(z)Φ̂(z) + . . .

(468)

= (469)

The end result if the sum of very many integrals of Wick contractions, and
Feynman rules, dependent on the form of Ĥint, are used to exploit patterns and
cancellations in the terms.
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Example: Yukawa Theory

Consider the Hamiltonian with interaction based on the fermion density ˆ̄ψψ̂
and a single boson field φ̂, make the boson field sensitive to the density of the
fermion field

Ĥ = ĤKG + ĤDirac +

∫
d3x g ˆ̄ψ(x)ψ̂(x)φ̂(x). (470)

The Feynman rules in momentum space for this quantum field theory are, with
dashed lines for bosons and solid lines for fermios

1. Propagators

φ̂(x)φ̂(y) = i
p2−m2

φ+iε
=

ψ̂(x) ˆ̄ψ(y) =
i(/p+m)

p2−m2+iε =

2. Vertices

−ig =

3. External Legs

φ̂|q〉 = 1 =

〈q|φ̂ = 1 =
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ψ̂|p, s〉 = us(p) =

〈p, s| ˆ̄ψ = ūs(p) =

ˆ̄ψ|k, s〉 = v̄s(k) =

〈k, s|ψ̂ = vs(k) =

4. Conserve momentum at each vertex

5. Integrate over each loop momentum
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6. Calculate the sign of the diagram

7. Divide by the symmetry factor

Then the n-point Green’s function is the sum of all connected and amputated
Feynman diagrams with n external legs subject to rules 1 through 7 above.
For example, a fermion scattering process looks like
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