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1 Introduction to Synthetic Spaces

There are so many different notions of “space” (topological spaces, manifolds,
schemes, stacks, and so on, as discussed in various other chapters of this book
and its companion volume [2]) that one might despair of finding any common
thread tying them together. However, one property shared by many notions of
space is that they can be “background” structure. For instance, many kinds of
algebraic objects, such as groups, rings, lattices, and boolean algebras, often
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come with “extra space structure” that is respected by all their operations. In
the case of groups, we have topological groups, Lie groups, sheaves of groups,
∞-groups, and so on.

For each kind of “spatial group,” much of the theory of ordinary groups
generalizes directly, with the “extra space structure” simply “coming along
for the ride.” Additionally, many naturally arising groups, such as the real
and complex numbers, matrix groups, the p-adic numbers, profinite groups,
and loop spaces, come “naturally” with spatial structure, and usually it would
be ridiculous to study them without taking that spatial structure into account.
On the other hand, “ordinary” groups are the special case of “spatial groups”
whose spatial structure is trivial (e.g., discrete); but certain natural construc-
tions on groups, such as the Pontryagin dual, profinite completion, or deloop-
ing, take us out of the discrete world. Thus, the theory of “groups with spatial
structure” subsumes, and in a sense “completes,” the study of ordinary groups.
Similar statements can be made about many other kinds of algebraic structure.

With this in mind, the idea of synthetic spaces can be summarized as
follows: if all objects in mathematics come naturally with spatial structure,
then it is perverse to insist on defining them first in terms of bare sets, as
is the official foundational position of most mathematicians, and only later
equipping them with spatial structure. Instead, we can replace set theory
with a different formal system whose basic objects are spaces. Since spaces
admit most of the same constructions that sets do (products, disjoint unions,
exponential objects, and so on), we can develop mathematics in such a system
with very few changes to its outward appearance, but all the desired spatial
structure will automatically be present and preserved. (In fact, as we will see
in Section 2.8, this can even be regarded as an explanation of why many
objects in mathematics come naturally with spatial structure.) Moreover, if
our formal system is sufficiently general, then its objects will be interpretable
as many different kinds of space; thus the same theorems about “groups”
will apply to topological groups, Lie groups, sheaves of groups, ∞-groups,
and so on.

A formal system with these properties is Martin-Löf dependent type
theory [84, 85]. Originally conceived as a constructive foundation for math-
ematics where everything has “computational” content, it turns out also
to admit “spatial” interpretations. This connection between constructivity/
computability and topology/continuity goes back at least to Brouwer and
was gradually developed by many people.1 It was originally restricted to

1 Escardó [40] cites “Kleene, Kreisel, Myhill/Shepherdson, Rice/Shapiro, Nerode, Scott, Ershov,
Plotkin, Smyth, Abramsky, Vickers, Weihrauch and no doubt many others.”
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particular topologies on computational data types but eventually broadened
to the realization that types could be interpreted as almost any kind of space.
Categorically speaking, each “kind of space” forms a topos or something like
it (a category that shares many properties of the category of sets), and the
interpretation proceeds by way of constructing a “free topos” from the syntax
of type theory (see Section 2).

There are other formal systems that can be interpreted in toposes, such
as intuitionistic higher-order logic. Dependent type theory has some minor
advantages of convenience, but more importantly, it has recently been recog-
nized [11, 64] also to admit interpretations in higher toposes. More concretely,
this means we can also interpret its basic objects as homotopy spaces, aka
∞-groupoids. The resulting collection of new axioms and techniques is known
as homotopy type theory [112] or univalent foundations [117]. It includes syn-
thetic homotopy theory, which studies homotopical objects “directly” without
the need for topological spaces, simplicial sets, or any other combinatorial
gadget. Like any new perspective on a subject, synthetic homotopy theory
suggests new ways to attack problems; it has already led to new proofs of
known theorems.

Classically, ∞-groupoids arose to prominence gradually, as repositories
for the homotopy-theoretic information contained in a topological space; see
Chapter 5 for an extensive survey. As we will see, however, the synthetic
viewpoint emphasizes that this structure of a “homotopy space” is essentially
orthogonal to other kinds of space structure, so that an object can be both
“homotopical” and (for example) “topological” or “smooth” in unrelated ways.
This sort of mixed structure is visible in many other chapters of the present
volume, such as those about toposes (Chapter 4) and stacks (Chapter 8). It is
also central to many applications, such as differential cohomology and gauge
field theory (e.g., Schreiber’s chapter in the companion volume [2]). Finally,
it describes cleanly how topological and smooth spaces give rise to homotopy
ones (see Section 5).

This chapter is intended as a brief introduction to the above ideas: type
theory, synthetic spaces, and homotopy type theory. Of course, many details
will be left out, but I hope to convey a flavor of the subject and leave the reader
with some idea of what it means to talk about the logic of space.

It should be emphasized that homotopy type theory, in particular, is a
very new subject. Many of its basic definitions are still in flux, and some of
its expected fundamental theorems have not yet been completely proven. In
general I will focus on what is expected to be true, in order to emphasize the
possibilities opened up by these ideas; but I will endeavor not to lie and to
include some remarks on the current state of the art as well.
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I will begin in Section 2 with an introduction to type theory. Then in
Sections 3 and 4, I will discuss its spatial and homotopical aspects, respec-
tively, and some of their applications. Finally, in Section 5, I will briefly
mention how these aspects are combined. For further reading, I recommend [7,
10, 90, 106] and [112].

2 Type Theory

2.1 On Syntax

Mathematicians often have a lot of difficulty understanding type theory (and
the author was no exception). One reason is that the usual presentation of
type theory is heavy on syntax, which most mathematicians are not used to
thinking about. Thus, it is appropriate to begin with a few general remarks
about syntax, what it is, and its role in type theory and in mathematics more
generally.2

In general, syntax refers to a system of formal symbols of some sort,
whereas semantics means the interpretation of those symbols as “things.” In
the language of category theory, we can generally think of syntax as describing
a free (or presented) object and semantics as the morphisms out of that object
determined by its universal property.

For instance, in group theory, we may write a sequence of equations such as

(gh)h−1 = g(hh−1) = ge = g. (2.1)

Where does this computation take place? One obvious answer is “in an
arbitrary group.” But another is “in the free group F 〈g,h〉 generated by
two symbols g and h.” Since the elements of F 〈g,h〉 are literally strings
of symbols (“words”) produced by multiplication and inversion from g and
h, strings such as “(gh)h−1” are themselves elements of F 〈g,h〉, and (2.1)
holds as an equality between these elements, that is, a statement in syntax.
Now if we have any other group G and two elements of it, there is a unique
group homomorphism from F 〈g,h〉 to G sending the letters g and h to the
chosen elements of G. This is the semantics of our syntax, and it carries
the equation (2.1) in F 〈g,h〉 to the analogous equation in G. Such reasoning
can be applied to arguments involving hypotheses, such as “if g2 = e, then
g4 = (g2)2 = e2 = e,” by considering (in this case) the group F 〈g | g2 = e〉
presented by one generator g and one equation g2 = e. (A free group, of
course, has a presentation with no equations.)

2 The “algebraic” perspective I will present is only one of many valid ways to look at type theory.
It has been developed by [39, 68, 108, 119], among others.
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In other words, we can regard an argument such as (2.1) either as a
“semantic” statement about “all groups” or as a “syntactic” statement about
a particular free or presented group. The former is a consequence of the latter,
by the universal property of free groups and presentations.

This may seem like mere playing with words,3 and the reader may wonder
how such a viewpoint could ever gain us anything. The reason is that often,
we can say more about a free object than is expressed tautologically by its
universal property.4 Usually, this takes the form of an explicit and tractable
construction of an object that is then proven to be free. Of course, any
construction of a free object must be proven correct, but such a proof can range
from tautological to highly nontrivial. The less trivial it is, the more potential
benefit there is from working syntactically with the free object.

For instance, a “tautological” way to define F 〈g,h〉 is by “throwing in
freely” the group operations of multiplication and inversion, obtaining formal
“words” such as (gg−1)(h−1(hg)), and then quotienting by an equivalence
relation generated by the axioms of a group. The universal property of a
free group is then essentially immediate. But a more interesting and useful
construction of F 〈g,h〉 consists of “reduced words” in g, h, and their formal
inverses (finite sequences in which no cancellation is possible), such as
ghg−1g−1hhgh−1, with multiplication by concatenation and cancellation.
The proof that this yields a free group is not entirely trivial (indeed, even
the definition of the group multiplication is not completely trivial); but
once we know it, it can simplify our lives.

As a fairly banal example of such a simplification, recall that the conjuga-
tion of h by g is defined by hg = ghg−1. Here is a proof that conjugation by g

is a group homomorphism:

hg kg = (ghg−1)(gkg−1) = ghkg−1 = (hk)g (2.2)

As straightforward as it is, this is not, technically, a complete proof from the
usual axioms of a group. For that, we would have to choose parenthesizations
and use the associativity and unit axioms explicitly:

hgkg = ((gh)g−1)((gk)g−1) = (g(hg−1))((gk)g−1) = ((g(hg−1))(gk))g−1

= (g((hg−1)(gk)))g−1 = (g(h(g−1(gk))))g−1 = (g(h((g−1g)k)))g−1

= (g(h(ek)))g−1 = (g(hk))g−1 = (hk)g (2.3)

3 No pun intended.
4 This is dual to the familiar fact that studying a “classifying space” can yield insights about the

objects it classifies – a classifying space being a representing object for a contravariant functor,
while a free or presented object represents a covariant one.
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Of course, this would be horrific, so no one ever does it. If mathematicians
think about this sort of question at all, they usually call (2.2) an “acceptable
abuse of notation.” But with the above explicit description of free groups, we
can make formal sense of (2.2) as a calculation in F 〈g,h,k〉, wherein ghg−1

and gkg−1 are specific elements whose product is ghkg−1. Then we can extend
this conclusion to every other group by freeness. Note that if we tried to do the
same thing with the “tautological” presentation of a free group, we would be
forced to write down (2.3) instead, so no simplification would result.

In general, there are several ways that a presentation of a free object might
make our lives easier. One is if its elements are “canonical forms,” as for
free groups (e.g., ghkg−1 is the canonical form of ((gh)g−1)((gk)g−1)). This
eliminates (or simplifies) the quotient by an equivalence relation required for
“tautological” constructions. Often there is a “reduction” algorithm to compute
canonical forms, making equality in the free object computationally decidable.

Another potential advantage is if we obtain a “version” of a free object that
is actually simpler. For instance, it might be stricter than the one given by a
tautological construction. This is particularly common in category theory and
higher category theory, where it can be called a coherence theorem.

Finally, a particular construction of a free object might also be psycholog-
ically easier to work with, or at least suggest a different viewpoint that may
lead to new insights. The best example of this is type theory itself: though it
also offers the advantages of canonical forms and strictness (see Sections 3.3
and 4.6), arguably its most important benefit is a way of thinking.

2.2 Universes of Mathematics

What, then, is type theory?5 Roughly speaking, it is a particularly convenient
construction of free objects for the theory of all of mathematics. Just as a
group presented by g, h and gh = hg admits a unique homomorphism to any
other group equipped with two commuting elements, type theory with certain
structures presents “a universe of mathematics” with a unique “mathematics-
homomorphism” to any other such universe of mathematics.

5 Unfortunately, the phrase “type theory” has many different meanings. On one hand, type theory
is a discipline lying at the boundary of mathematics and computer science. This discipline
studies deductive systems that are themselves also known as type theories. But in the context of
mathematical foundations, such as here, “type theory” generally refers to a particular subclass
of these deductive systems, which are more precisely called dependent type theories (because
they admit “dependent types”; see below). The type theory we are interested in here is also
sometimes called “formal type theory” to distinguish it from “computational type theory,”
which is about assigning types to untyped computations (see, e.g., [3, 4]).
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This discussion of “universes of mathematics” may sound odd; surely
there is only one universe of mathematics? Well, yes, mathematics is a
whole; but it has been known since the early 20th century that some for-
mal systems, such as Zermelo–Fraenkel set theory, can encode almost all
of mathematics. To first approximation, by a “universe of mathematics” I
mean a model of a formal system in which mathematics can be encoded.
Note that Gödel’s incompleteness theorem ensures that any such system has
many different models.6 Thus, there are many “universes of mathematics” in
this sense.

Often the incompleteness theorem is seen as a bug, but from our point of
view it is actually a feature! We can make positive use of it by recognizing
that certain mathematical structures, like notions of space, happen to form new
universes of mathematics by themselves. In other words, starting from one
universe of mathematics,7 we can construct another universe whose objects
are, from the point of view of our original universe, “spaces” of some sort.
Thus, when a mathematician living in this new world constructs a bare function
A −→ B between sets, the mathematician in the old world sees that it is in fact
a continuous function between spaces.

This is admittedly a bit vague, so let me pass to a second approximation of
what I mean by a “universe of mathematics”: a category, or (∞,1)-category,
with certain structure. Our starting universe is then the category of sets (or
perhaps the (∞,1)-category of ∞-groupoids). Thus, type theory gives a way
to construct free or presented objects in some category of structured categories.
Such a free object is sometimes called the “syntactic category” or “classifying
category” of the type theory. In the words of Scott [100]:

[. . . ] a category represents the “algebra of types,” just as abstract rings give us the
algebra of polynomials, originally understood to concern only integers or rationals.

Now the usual way of working “inside” a particular category is to write all
arguments in diagrammatic language. For instance, if G is a group object in a
category (such as a topological group in the category of topological spaces, or
a Lie group in the category of smooth manifolds), then the argument analogous
to (2.1) would be the commutativity of the following diagram:

6 Specifically, it shows that any sufficiently powerful formal system contains statements that are
neither provable nor disprovable. The completeness theorem then implies that there must be
some models in which these statements are true and some in which they are false.

7 We may regard the starting universe as the “true” one, but there is no formal justification for
this. We will come back to this in Section 6.
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G × G
1×� ��

proj1
��

G × G × G
1×1×inv �� G × G × G

mult×1 ��

1×mult
��

G × G

mult
��

G
1×id ��

1

��G × G
mult �� G

(2.4)

Categorically trained mathematicians become quite adept at translating calcu-
lations like (2.1) into diagrams like (2.4). However, objectively I think it is
hard to deny the relative simplicity of (2.1) compared to (2.4). The benefits
are magnified further when we include additional simplifications like those
in (2.2).

Type theory allows us to use equations like (2.1) and (2.2) to prove things
about all group objects in all categories. Its syntax involves elements with
operations and equations, so we can speak and think as if we were talking
about ordinary sets.8 But it is nevertheless a description of a free category of a
certain sort,9 so that its theorems can be uniquely mapped into any other similar
category. Thus, type theory supplies a different perspective on categories that
is often more familiar and easier to work with.

To be a little more precise, the benefit here comes from the interplay
between two modes of interacting with type theory. On one hand, we can define
and study the formal system of type theory inside mathematics. This enables
us to talk about its having multiple models, and hence functioning as a syntax
for categories, as described above. But on the other hand, because type theory
is sufficiently powerful to encode all of mathematics, we are also free to regard
it as the “ambient foundation” for any mathematical theory. Most modern
mathematicians implicitly assume set theory as a foundation, but for the most
part type theory is just as good (and, as we will see in Section 4, it makes “new
kinds of mathematics” possible as well). Of course, real-world mathematics is
rarely “fully encoded” into any foundational system, but experience shows that

8 Another approach to this problem, which enables us to literally talk about ordinary sets, is
to speak about “generalized elements” of an object G (meaning arbitrary morphisms with
codomain G) or, equivalently, to apply the Yoneda embedding. This works for structures
defined using only limits, such as group objects, but it breaks down when colimits, images,
exponentials, and so on come into play. It can be enhanced to deal with some such cases using
“Kripke–Joyal semantics,” but this is essentially equivalent to type theory.

9 See Sections 2.5 and 4.6 for some caveats to this statement.
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it is always possible in principle, and nowadays with computer proof assistants
it is becoming more common and feasible to do explicitly.

The point, then, is that any theorem in “ordinary” mathematics can be
encoded using the second “foundational” point of view, obtaining a derivation
in the formal system of type theory; but then we can switch to the first
“semantic” point of view and conclude that that theorem is actually true
(suitably interpreted) in all categories with appropriate structure. In this way,
any mathematical theorem is actually much more general than it appears.10

2.3 Types versus Sets

With those lengthy preliminaries out of the way, let us move on to what type
theory actually looks like. If it is to describe the free “universe of mathematics,”
type theory should be a formal system into which mathematics can be
encoded. The currently accepted formal system for encoding mathematics is
Zermelo–Fraenkel set theory (ZFC), and mathematicians have a great deal of
practice representing structures as sets. Thus it makes sense that the basic
objects of type theory, called types, are very set-like – with one important
difference.

In ZFC, an assertion of membership like “x ∈ A” is a statement about two
previously given objects x and A, which might be true or false, and can be
hypothesized, proven, or disproven. In other words, the universe of ZFC is a
vast undifferentiated collection of things called “sets,” with a relation called
“membership” that can be applied to any two of them. By contrast, in type
theory, the type to which an element belongs is “part of its nature,” rather
than something we can ask about and prove or disprove; two distinct types can
never11 share any elements in common. To emphasize this difference, we write
x : A, rather than x ∈ A, to mean that x is an element of the type A.

This perspective on sets is like that of categorical or “structural” set theory,
such as Lawvere’s ETCS [72, 75], which axiomatizes the category of sets and
functions. It contrasts with membership-based or “material” set theory such
as ZFC, which axiomatizes the class of sets and its membership relation. The
structural approach generalizes better when thinking of the basic objects as
spaces rather than bare sets, since the spatial relationships between points
are specified by an ambient space: it does not make sense to ask whether

10 However, as we will see in Section 3.2, it requires some care on the side of ordinary
mathematics – specifically, avoiding certain restrictive logical axioms – to maximize this
resulting generality.

11 As with almost any general statement about type theory, there are exceptions to this, but for the
most part, it is true.
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two points are “nearby” unless we have fixed some space in which they both
reside.

In principle it may be possible to use a more ZFC-like formal system
for at least some of the same purposes as type theory (see, e.g., [9]), but
the connection to spaces would become rather more tenuous. Moreover, the
structural perspective matches the usage of “sets” in most of mathematics.
Outside the formal theory of ZFC, the primary place where one element can
belong to more than one set, or where elements of distinct sets are compared, is
when the given sets are subsets of some ambient set. This situation is encoded
in type theory by a notion of “subset of A” that, like “element of A,” is a basic
notion not reducible to something like “set that happens to be a subset of A”;
see Section 3.1.

While we are talking about ZFC and set theory, it is worth mentioning
another reason type theory is often difficult for mathematicians. Any formal
system for encoding mathematics, be it ZFC, ETCS, or type theory, must by
its nature be careful about many things that mathematicians usually gloss over.
Ordinary mathematical notation and writing is, technically speaking, ambigu-
ous and full of gaps, trusting the human reader to draw “obvious” conclusions.
But to give a mathematical theory of mathematics (and in particular, to prove
things like “type theory presents a free structured category”), we have to
remove all such ambiguity and fill in all the gaps. This causes the syntactic
formulas of the formal system to appear quite verbose, and often barely
comprehensible to a mathematician accustomed to informal mathematical
language.

The important points are that this is true for all formal systems and that
it should not bother us when doing ordinary mathematics. The process of
“encoding” mathematics into a formal system such as ZFC, ETCS, or type
theory looks somewhat different depending on which formal system is chosen,
but it is generally well understood. In particular, no matter what formal system
we choose, there is no need for its verbosity to infect ordinary mathematics;
we remain free to “abuse notation” in the usual way.

I stress this point because one sometimes encounters a false impression
that type theory requires “heavier syntax” than set-based mathematics or that
it forbids “abuse of notation.” This is probably partly because type theory
is often presented in a very formal and syntactic way – perhaps because
many type theorists are logicians or computer scientists – whereas most
mathematicians’ exposure to set theory has been fairly informal and intuitive.
Moreover, the particular notations used in type theory are somewhat unfamiliar
to mathematicians, and take some practice to learn to read correctly. But the
syntax of type theory is intrinsically no heavier or unabusable than that of set
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theory. (Promoting a style of informal mathematics that matches the formal
system of type theory was one of the explicit goals of [112].)

2.4 Judgments and the Classifying Category

Finally, we are ready to describe the syntax of type theory and how it generates
a category (which we will call the classifying category; it is also called the
syntactic category and the category of contexts). In Sections 4 and 5 we will
be concerned with “homotopy” type theory, whose classifying category is an
(∞,1)-category; but for simplicity, in Sections 2 and 3 we begin with so-called
extensional type theory, whose classifying category is an ordinary 1-category.
Most of what we say here will remain true in the homotopy case with only
minor modifications.

Like the elements of a free group, the syntactic objects of type theory are
“words” built out of operations. In a free group, there is only one sort of word,
since a group involves only one collection of “things” (its elements). But since
type theory presents a category with both objects and morphisms, it has at least
two sorts of “words.” Type theorists call a “sort of word” a judgment form and
a particular word a judgment.

The first judgment form is a type judgment; it is written “B type” and
pronounced “B is a type.” Here B is a syntactic expression like N×(R+Q), in
which × and + are operations on types, formally analogous to the multiplica-
tion of elements represented by concatenation of words in a free group; we will
come back to them in Section 2.5. The objects of the “classifying category”
generated by a type theory are12 the syntactic expressions B for which the
judgment B type can be produced by the rules (i.e., operations) to be described
in Section 2.5. For clarity, we will write �B� when B is regarded as an object
of this category, and say that B presents the object �B�.

The second judgment form is a term judgment, written “b : B.” Here B

is a syntactic expression for a type (i.e., we must also have “B type”). For
instance, we might have (3 · 2 + 1, inr( 3

4 − 17)) : N × (R + Q). Here again,
·, + , − , inr and so on denote operations that will be described in Section 2.5.
We pronounce b : B as “b is an element of B” or “b is a point of B” or “b is a
term of type B,” emphasizing respectively the set-like, space-like, or syntactic
character of B.

More generally, a term judgment can include a context, consisting of a list of
variables, each with a specified type, that may occur in the term b. For instance,
we might also write (3x+1, inr( 3

4 −y)) : N×(R+Q), which only makes sense

12 Well, not exactly; see below.
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in the context of x : N and y : Q. The traditional notation in type theory is to
write the context as a list of variables with their types, joined by commas, and
separate it from the judgment with the symbol � (called a turnstile). Thus, the
above judgment would be written

x : N,y : Q � (3x + 1, inr( 3
4 − y)) : N × (R + Q).

Here the � is the “outer relation” that binds most loosely; then the commas on
the left-hand side bind next most loosely, separating the (variable: type) pairs.
Thus, for emphasis it could be bracketed as

((x : N),(y : Q)) � ((3x + 1, inr( 3
4 − y)) : (N × (R + Q))).

Often the Greek letter � denotes an arbitrary context, so that �,x : A � b : B

(to be parsed as (�,(x : A)) � (b : B)) means that in some arbitrary context
together with a variable x of type A, we have a term b of type B.13

Term judgments � � a : A present morphisms in the classifying category.
In the simplest case, � contains only one variable, such as x : A � b : B, and
this morphism �b� is from �A� to �B�. For the general case � � a : A, we have
to modify our definition of the classifying category by taking its objects to
be contexts rather than types, with our previous �A� corresponding to �x : A�;
then � � a : A presents a morphism from ��� to �A�. For this reason, the
classifying category is also known as the category of contexts; we denote it
by Ctx.

We stipulate that ��� is a product of the types in �, so �x : A,y : B� ∼=
�A� × �B� and so on. (In particular, the empty context yields a terminal object
� �.) Thus, for instance, x : R,y : R � xy : R yields the multiplication map
R × R −→ R. The universal property of products implies that for contexts �

and �, a morphism in Ctx from ��� to a general context ��� must consist of
a tuple of term judgments � � bi : Bi for all variables yi : Bi occurring in �.
If we also have � � c : C, we get another term judgment denoted

� � c[b1/y1, . . . ,bm/ym] : C

by substituting each bi for yi in c; this presents the composite ��� −→ ��� −→
�C�. For instance, we have a morphism from �x : R� to �z : R,w : R� defined
by the terms x : R � (x − 1) : R and x : R � (x + 1) : R; substituting it into
z : R,w : R � zw : R gives x : R � (x − 1)(x + 1) : R. That is,

(zw)
[
(x − 1)/z,(x + 1)/w

] = (x − 1)(x + 1).

13 Technically, �, b, A, and B here are “metavariables,” not to be confused with “variables,” such
as x in a context. We will come back to this in Section 2.5.
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So far, we have described simple type theory. Next we allow type judgments
“B type” to have a context as well, making B into a dependent type or type
family. Intuitively, a dependent type “� � B type” presents an object of the
slice category Ctx/���, that is, an object with a morphism to ���. We think of
the “fiber” over a point of ��� as the instance of B corresponding to that point.

For instance, in informal mathematics, we might speak of “an arbitrary
finite cyclic group Cn,” for n : N+. In type theory, this becomes n : N+ �
Cn type, corresponding categorically to

∐
n∈N+ Cn with its projection to N+.

Topologically, this is a bundle over N+, with the Cn as its fibers. Working
in a category in the style of (2.4) requires manually translating from “arbitrary
objects” to bundles; this is one of the least convenient aspects of categorical set
theories and of the traditional way of doing mathematics in a topos. The ability
to talk directly about families of types and have them interpreted automatically
as bundles is one of the most significant advantages of type theory.

A crucial fact is that substitution into a dependent type presents the pullback
functor between slice categories. For instance, we have a judgment � 3: N+
with no variables, yielding a context morphism from the terminal object � �

to �N+�. Substitution into n : N+ � Cn type yields the nondependent type
� C3 type, which is the pullback of

∐
n∈N+ Cn along the inclusion 3: � � −→

�N+�:

C3 ��

��
�


∐
n∈N+ Cn

��
1 �� N+

As an even simpler example, if � B type is a nondependent type, we can
substitute it along the unique context morphism from any � to the empty
context, yielding a “trivially dependent type” � � B type. This presents the
pullback of �B� to the slice over ���, that is, the projection ��� × �B� −→ ���

(a “trivial bundle”):

��� × �B� ��

��
�


�B�

��
��� �� � � = 1

With dependent types, we can allow the type B in a term judgment � �
b : B to also depend on �. For instance, the generators of the cyclic groups
form a term judgment n : N+ � gn : Cn. Such a judgment � � b : B represents
a section of the projection represented by the dependent type � � B type: we
“select one point in each fiber.” This includes the nondependent case because
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morphisms ��� −→ �B� are equivalent to sections of the projection ��� ×
�B� −→ ���.

An example that will be central to the story of this entire chapter is the
diagonal map ��A� : �A� −→ �A�× �A�. We can regard this as an object of the
slice category Ctx/(�A�×�A�), or equivalently Ctx/�x:A,y:A�; it is then presented
by a dependent type called the equality type or identity type, written

x : A,y : A � (x = y) type or x : A,y : A � Id(x,y) type.

We will explain this type in more detail in Section 4.1. For the moment, we
observe that it reduces equalities of terms to existence of terms. For instance,
given � � a : A and � � b : A representing morphisms �a�,�b� : ��� −→ �A�,
substituting them into the equality type we get a dependent type � � (a =
b) type that presents the pullback of ��A� along (�a�,�b�) : ��� −→ �A�× �A�,
or equivalently the equalizer of �a� and �b�. Thus, a judgment � � e : a = b

says that this equalizer has a section, or equivalently that �a� = �b�. So our
type and term judgments also suffice to present equality of morphisms.

To be precise, in the presence of dependent types we extend our previous
definition of the classifying category Ctx as follows. First, we also allow the
types in a context to depend on the variables occurring earlier in the same
context. For instance, we can form the context (n : N+,x : Cn), and then in
this context write n : N+,x : Cn � x2 : Cn for the operation that squares an
arbitrary element of an arbitrary cyclic group. Categorically, if � � B type

presents an object of the slice over ���, that is, a morphism with codomain
���, then the extended context ��,x : B� is the domain of this morphism. This
reduces to our previous ��,x : B� = ��� × �B� if B is nondependent.

Second, we take the objects of Ctx to be contexts in this generalized
sense, and a morphism from ��� to ��� to consist of term judgments for all
1 ≤ i ≤ m:

� � bi : Bi[b1/y1, . . . ,bi−1/yi−1],

where � = (y1 : B1,y2 : B2, . . . ,ym : Bm), with yj potentially occurring in Bi

for j < i. That is, we first give � � b1 : B1, presenting a morphism

�b1� : ��� −→ �B1�.

Then we substitute b1 for y1 in B2, obtaining a type � � B2[b1/y1] and a
corresponding extended context that presents the pullback

��,y2 : B2[b1/y1]� ��

��

�

�y1 : B1,y2 : B2�

��
���

�b1�
�� �B1�.
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Next we give � � b2 : B2[b1/y1], which presents a section of this pullback,
or equivalently a morphism � −→ �y1 : B1,y2 : B2� making this triangle
commute:

�y0 : B0,y1 : B1�

��
���

�b0�
��

�b1�
�����������
�y0 : B0�.

Continuing in this way, the sequence of terms (b0,b1, . . . ,bm) that represent a
morphism ��� −→ ��� individually present a tower of sections

�y0 : B0,y1 : B1, . . . ,ym : Bm� = ��� ,

��
...

��
���

�b0� �����
����

����
��

�b1� ��

�bm�

��������������������
�y0 : B0,y1 : B1�

��
�y0 : B0�

with �bm� being the overall morphism ��� −→ ���. For instance, the
“squaring” injections in : Cn ↪→ C2n, represented by term judgments

n : N+ � 2n : N+ and n : N+,x : Cn � in(x) : C2n,

assemble into a morphism �n : N+,x : Cn� −→ �m : N+,y : Cm�. Categorically,
this is a morphism

∐
n Cn −→ ∐

m Cm that sends the nth summand to the 2nth
summand.

Finally, we quotient these morphisms by an equivalence relation arising
from the identity type. In the simplest case where each context has only one
type, we identify the morphisms presented by x : A � b1 : B and x : A � b2 : B

if there is a term x : A � p : b1 = b2. The case of morphisms between arbitary
contexts is a generalization of this. (We will reconsider this last step in Sections
4.6 and 4.7.)

This completes our definition of the classifying category of a type theory.
We can now define the projection morphism ��,z : C� −→ ��� associated
to a dependent type � � C type, exhibiting ��,z : C� as an object of the
slice category over ���, as we intended. According to the above description
of morphisms, this projection morphism should consist of a term in context
�,z : C for each type in �; we take these to be just the variables in �,
ignoring z.



Homotopy Type Theory 337

For instance, the projection map �x : A,y : B,z : C� −→ �x : A,y : B� is
determined by the terms x : A,y : B,z : C � x : A and x : A,y : B,z : C �
y : B. Similarly, a section of this projection consists of terms

x : A,y : B � a : A,

x : A,y : B � b : B[a/x],

x : A,y : B � c : C[a/x,b/y],

such that the composite �x : A,y : B� −→ �x : A,y : B,z : C� −→ �x : A,y : B�

is the identity, that is, that a and b are the same as x and y. Thus, such a section
is simply determined by a term x : A,y : B � c : C, as we intended.

Of course, not every object of the slice category Ctx/��� is of this form,
but every object of Ctx/��� is isomorphic to one of this form. Consider the
simplest case when � is a single type B, and we have an object of Ctx/�B�

whose domain is also a single type A, equipped with a term x : A � f (x) : B.
Let � denote the context (y : B,x : A,p : f (x) = y); then ��� is the pullback

��� ��

��

�

�B�

,�B�

��
�B� × �A�

1×�f �
�� �B� × �B�

using the identity type y1 : B,y2 : B � (y1 = y2) type mentioned above to
present the diagonal ,�B�. It is easy to see categorically that such a pullback
is isomorphic to �A�. Thus, every object of Ctx/�B� is at least isomorphic to a
composite of two projections from dependent types

�y : B,x : A,p : f (x) = y� −→ �y : B,x : A� −→ �y : B�.

Using the �-type to be defined in Section 2.5, we can reduce this to one such
projection:

�y : B,z :
∑

x:A(f (x) = y)� −→ �y : B�.

A similar argument works with B replaced by any context �. Thus we can
assume that any object of a slice category is determined by a dependent type.

2.5 Rules and Universal Properties

In the previous section we described the judgment forms of type theory and
how they present the classifying category, claiming that each judgment is
analogous to a word in a free group. In this section we will describe what the
judgments are for each judgment form, or more precisely how we can generate
them.
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The words in a free group are generated by successive application of
“operations.” For the tautological description of a free group, these operations
are just the operations of a group: multiplication, inversion, and the identity
(a nullary operation). When describing an arbitrary group, we think of these
operations as defined on a fixed underlying set; but when generating a free
group, we instead think of each of them as a “way to produce new elements,”
usually represented as syntactic strings of symbols. That is, the elements of the
free group are a quotient of the set of all the syntactic strings obtainable by
successive application of the following rules:

1. Given elements X and Y , we have an element (XY).
2. Given an element X, we have an element (X−1).
3. We have an element e.

Formally, this is an inductive definition: we consider the smallest set of
syntactic strings closed under the rules. Usually we think of applying these
operations starting with a set of generators, but an equivalent description that
generalizes better is to include each generator as another nullary operation:

4. For any generator g, we have an element g.

That is, generators are a special case of operations. This enables us to similarly
define the “reduced words” version of a free group using inductive operations:

1. We have an element e,
2. for any generator g and any element X not ending with g−1, we have an

element Xg, and
3. for any generator g and any element X not ending with g, we have an

element Xg−1.

Defining sets inductively in this way makes it easy to define operations on them
by recursion. For instance, the group multiplication in the reduced-words case
is defined by recursion on the second word as follows:

1. The product of Y and e is Y .
2. To multiply Y and Xg, first multiply Y by X. If the result ends with a g−1,

remove it to get the answer; otherwise, concatenate a g at the end.
3. Similarly, to multiply Y and Xg−1, first multiply Y by X. If the result ends

with a g, remove it; otherwise, concatenate a g−1 at the end.

Note that in the tautological version, the group multiplication is one of
the inductive clauses defining the elements of the free group, and hence is
automatically present, whereas in the reduced-words version, the inductive
clauses tell us how to multiply by generators only, and then we have to define



Homotopy Type Theory 339

multiplication of arbitrary elements afterward. As mentioned in Section 2.1,
this extra work pays dividends. For instance, in this case, there is no need
to quotient by any equivalence relation; we can prove (by induction) that the
above-defined multiplication is already associative, is unital, and has inverses.

Now, the judgments of type theory, like the words in a free group, are
generated inductively by operations, which in this case are usually called rules.
Categorically, these rules build new objects and morphisms from old ones,
generally according to them some universal property. For example, we might
have a rule saying that any two types have a coproduct (disjoint union). This
rule applies in any context (i.e., we have coproducts in every slice category);
type theorists write it as

� � A type � � B type

� � (A + B) type
. (2.5)

As with judgments, this notation takes practice to read. The horizontal
bar separates the “inputs” (called premises), on top, from the “output” (or
conclusion), on the bottom. Each input or output is a judgment-in-context,
and the inputs are separated by wide spaces or linebreaks. If the operations
for the tautological description of a free group were written analogously, they
would be

X elt Y elt

(XY) elt

X elt

(X−1) elt e elt

g is a generator

g elt
.

Here “X elt” is the judgment that X is an element of the free group, analogous
to the judgments “A type” and “x : A � b : B” that A is an object and b a
morphism in a free category. Note that the identity (a nullary operation) has no
premises. Similarly, the operations for the reduced-words description are

e elt

X elt g is a generator X does not end with g−1

(Xg) elt

X elt g is a generator X does not end with g

(Xg−1) elt
.

The variables X and Y are analogous to �, A, B, and b in type theory.
We call the latter metavariables to distinguish them from the variables x : A

occurring in a context �, which have no analog in group theory.
Returning to the coproduct type A + B, for it to be worthy of the name

“coproduct,” it needs to have certain structure. For simplicity, let us consider
first the case when A and B are not dependent types; that is, the context �
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in (2.5) is empty, so that �A� and �B� are objects of Ctx rather than one of its
slices. Now to start with, we need injections from �A� and �B� into �A + B�.
It may seem natural to write these as

x : A � inl(x) : (A + B)
and

y : B � inr(y) : (A + B)
. (2.6)

(We omit the judgments � A type and � B type from the premises, since these
are implied14 by mention of A + B.) However, instead, one usually uses the
following rules, with an arbitrary context �:

� � a : A

� � inl(a) : (A + B)
and

� � b : B

� � inr(b) : (A + B)
. (2.7)

The naı̈ve rules (2.6) say that “there is a morphism �inl� : �A� −→ �A + B�”
(and similarly for �inr�), whereas the rules (2.7) say that “for any morphism
�a� : ��� −→ �A�, there is an induced morphism �inl(a)� : ��� −→ �A + B�.”
Intuitively, the latter should be thought of as describing �inl� indirectly in
terms of its image under the Yoneda embedding, that is, as a natural family
of operations Ctx(���,�A�) −→ Ctx(���,�A + B�).

The reason type theorists choose (2.7) over (2.6) is somewhat esoteric and is
not necessary to understand in order to use type theory successfully. However,
I will spend a little time explaining it, because it has to do with the specifics of
how type theory presents a free category and hence with the question (already
mentioned in Section 2.1) of why one might use the complicated syntax of type
theory rather than arguing directly in the language of category theory.

The advantage of (2.7) over (2.6) is closely analogous to that of the reduced-
words description of a free group over the tautological one. More precisely, the
rules (2.6) are analogous to the generator rule

g is a generator

g elt
,

whereas the rules (2.7) are analogous instead to

X elt g is a generator X does not end with g−1

(Xg) elt
.

That is, we regard the morphism �inl� as a “generator,” and composition
in a category as analogous to group multiplication. Just as the tautological
description of a free group requires an explicit multiplication operation

14 Depending on technical details far beyond our present scope, this implication might be a
theorem about type theory or it might be just an unproblematic abuse of notation.
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X elt Y elt

(XY) elt
,

if we used (2.6), then our type theory would need an explicit rule allowing us
to compose �a� : ��� −→ �A� and �b� : �A� −→ �B�. As we saw in Section 2.4,
composition is represented type-theoretically by substitution,15

� � a : A x : A � b : B

� � b[a/x] : B
, (2.8)

and we would have to quotient by an equivalence relation forcing this
composition to be associative and unital. But if we instead use (2.7), which
incorporates “postcomposition with generators” into the inductive definition
of the set of judgments, then just as we defined multiplication as an operation
on reduced words, with one recursive clause for each “postmultiply with a
generator” rule, we can define composition as an operation on judgments,
with one recursive clause for each “postcompose with a generator” rule such
as (2.7). We can then prove that this composition is associative and so on, rather
than having to quotient by an equivalence relation to enforce associativity.
(This is called the admissibility of substitution; it is closely related to cut-
elimination.) Unlike in the simple case of free groups, we cannot generally
entirely eliminate the quotient, but we can significantly reduce the complexity
of the necessary equivalence relation; see Sections 3.3, 4.6, and 4.7. This is one
of the advantages of presenting free categories using type theory, rather than a
more “tautological” category-theoretic syntax.

When A and B depend on a nonempty context �, the analogue of (2.6) is

�,x : A � inl(x) : (A + B)
and

�,y : B � inr(y) : (A + B)
. (2.9)

The former literally means a section of the pullback of ��,A + B� to ��,A�:

��,A,A + B�

�����
���

�����
����

��,A�

��

����
���

���
��,A + B�

������
����

�

���

although by the universal property of pullback, this is equivalent to a morphism
��,A� −→ ��,A + B� over ���.

15 The actual substitution rule is more general, allowing A, B, and b to depend on � as well. But
this simple version more obviously represents categorical composition.
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The analogue of (2.7) for dependent types actually looks no different
from (2.7) itself, although I will write it with � instead of � for the context, to
emphasize that this is the same � on which A and B depend:

� � a : A

� � inl(a) : (A + B)
and

� � b : B

� � inr(b) : (A + B)
. (2.10)

This seems only to yield an operation taking every section of the projection
��,A� −→ ��� to a section of ��,A + B� −→ ���, but there is a trick that
gives more. For any morphism �θ� : ��� −→ ��� in Ctx, we can substitute
θ into A and B, obtaining types A[θ ] and B[θ ] representing the pullbacks
of �A� and �B� along �θ�. Moreover, the definition of substitution ensures
that (A + B)[θ ] is A[θ ] + B[θ ], so we can also apply (2.10) in context �.
This gives an operation taking any section of any pullback of the projection
��,A� −→ ��� along some morphism �θ� to a section of the corresponding
pullback of ��,A + B� −→ ���. But by the universal property of pullback,
such a section corresponds to a map ��� −→ ��,A� over �θ�, and likewise
for ��,A + B�. Since ��� is an arbitrary object of Ctx, we have a natural
transformation

Ctx/���(���,��,A�) ∼= Ctx/���(���,��,A + B�)

and hence a morphism �A� −→ �A + B� over ���. Thus, (2.10) and (2.9) are
also different ways of describing the same categorical structure, and there are
technical but real advantages to (2.10). However, (2.9) (plus substitution rules
like (2.8)) still yields a respectable type theory (called “explicit substitution
calculus”) that has its uses.

Whichever of (2.9) or (2.10) we use, they are called the introduction rules
for the coproduct (they “introduce” elements of A+B), whereas (2.5) is called
the formation rule. The coproduct also has an elimination rule, which expresses
the “existence” part of its universal property:

�,x : A � cA : C �,y : B � cB : C � � s : A + B

� � case(C,cA,cB,s) : C
(2.11)

That is, given morphisms �A� −→ �C� and �B� −→ �C�, we have a morphism
�A + B� −→ �C�. The notation case(C,cA,cB,s) suggests that it is defined by
inspecting the element s of A + B and dividing into cases: if it is of the form
inl(x), then we use cA, whereas if it is of the form inr(y), then we use cB .16

16 Technically, we should really write something like case(C,x.cA,y.cB,s), to indicate which
variables x and y are being used in the terms cA and cB .
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More generally, we allow C to be a dependent type:

�,z : A + B � C type � � s : A + B

�,x : A � cA : C[inl(x)/z] �,y : B � cB : C[inr(y)/z]

� � case(C,cA,cB,s) : C[s/z]
. (2.12)

Categorically, this says that given a map �C� −→ �A + B� and sections of
its pullbacks to �A� and �B�, we can define a section over �A + B� by the
universal property of �A + B�. This generalization of the existence part of the
universal property is actually an equivalent way to include the uniqueness part
of it. On one hand, categorically, uniqueness is what tells us that the induced
map �A + B� −→ �C� is in fact a section. On the other hand, assuming (2.12),
if z : A + B � c : C and z : A + B � d : C have equal composites with inl and
inr, then we can express this using the “equality type” from Section 2.4,

x : A � eA : c[inl(x)/z] = d[inl(x)/z]

y : B � eB : c[inr(y)/z] = d[inr(y)/z],

and then use (2.12) to construct z : A + B � e : (c = d).
Finally, the universal property also requires that �case(C,cA,cB)� ◦ �inl�

equals �cA�, and similarly for inr. These are called computation rules. Here
“equals” is usually taken to mean something stronger than the equality type,
analogous to the equivalence relation imposed on words in a free group, and
written with ≡; we will return to this in Sections 3.3 and 4.7:

�,z : A + B � C type

�,x : A � cA : C[inl(x)/z] �,y : B � cB : C[inr(y)/z]

� � case(C,cA,cB, inl(a)) ≡ cA[a/x]

In conclusion, we have four groups of rules relating to coproducts: for-
mation (how to build types), introduction (how to build elements of those
types), elimination (how to use elements of those types to build elements of
other types), and computation (how to combine introduction and elimination).
Most rules of type theory come in packages like this, associated to one “type
constructor” (here the coproduct) and expressing some universal property.
Given any class of structured categories determined by universal properties,
we can obtain a corresponding type theory by choosing all the corresponding
packages of rules. By and large, the rules for each type constructor are self-
contained, allowing them to be “mixed and matched”; thus unlike ZFC, type
theory is not a fixed system of axioms or rules, but a “modular” framework for
such systems.
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Table 6.1. Type constructors and their semantics

Type constructor Universal property See

Coproduct types A + B binary coproducts Section 2.5
Empty type ∅ initial object

Product types A × B binary products
Unit type 1 terminal object

Natural numbers N natural numbers object Section 4.4
Identity type (x = y) diagonal/equalizer Section 4.1
Function type A −→ B exponential object (cartesian closure) Section 2.5

Dependent sum
∑

x:A B left adjoint to pullback
Dependent product

∏
x:A B right adjoint to pullback (lcc)

Proposition type � subobject classifier (elementary topos) Section 2.6
Universe type U object classifier (∞-topos) Section 2.6

Coequalizer type coeq(f ,g) coequalizer Section 4.4

� � A type � � B type

� � (A −→ B) type

�,x : A � b : B

� � λx.M : A −→ B

� � f : A −→ B � � a : A

� � f (a) : B

�,x : A � b : B � � a : A

� � (λx.b)(a) ≡ b[a/x]

� � f : A −→ B

� � f ≡ (λx.f (x))

Figure 6.1 The rules for function types.

The most common type constructors and their corresponding universal
properties are shown in Table 6.1. We will discuss some of these further in later
sections, as indicated. Here we give the rules explicitly only for function types,
which correspond to categorical exponentials; see Figure 6.1. The exponential
object from A to B is often denoted by BA or AB, but in type theory, we
denote it by A −→ B; this way, the notation for its elements is f : A −→ B,
matching the usual notation for “f is a function from A to B.” Again we have
a formation rule saying when A −→ B is a type, an introduction rule saying how
to produce terms in A −→ B, an elimination rule saying how to use such terms
(by applying them to an argument), and two computation rules. Categorically,
the elimination rule yields an “evaluation” morphism �A −→ B�×�A� −→ �B�,
while the introduction rule says that any map ��� × �A� −→ �B� has a
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“transpose” ��� −→ �A −→ B�. The computation rules say that these compose
correctly.17

An important generalization of this is the dependent function type, where
the codomain B is allowed to depend on the domain A. For instance, the family
of generators of cyclic groups n : N+ � gn : Cn yields a dependent function,
assigning to each n the generator of Cn:

λn.gn :
∏

n:N+Cn.

Categorically, given � � A type and �,x : A � B type, the type � �∏
n:AB type is obtained from ��,x : A,y : B� −→ ��,x : A� by applying the

right adjoint of pullback along ��,x : A� −→ ���. Such a right adjoint exists
exactly when the category is locally cartesian closed (LCC).

Of the type constructors in Table 6.1, LCC categories also have products
A × B, a terminal object 1, diagonals represented by the identity type (x =
y),18 and left adjoints to pullback represented by dependent sums

∑
x:A B.

The latter generalizes A × B; its elements are pairs (x,y) where the type of y

can depend on x. This collection of type constructors, corresponding to locally
cartesian closed categories, is one of the most “standard” type theories, some-
times called extensional Martin-Löf type theory (EMLTT) without universes
(though that phrase also sometimes includes coproducts and the empty type,
and sometimes the “reflection rule” to be discussed in Section 4.7).

In general, choosing a particular collection of type constructors specifies
the rules for a particular type theory T, and thereby the collection of derivable
judgments. From this we construct a classifying category Ctx(T) as in Section
2.4, which one can prove to be initial among categories with the corresponding
structure. For instance, the classifying category of extensional Martin-Löf type
theory, as above, is the initial locally cartesian closed category. It follows that
the types and terms we construct in type theory have unique interpretations as
objects and morphisms in any category with appropriate structure, by applying
the unique structure-preserving functor out of the initial object.

As in the case of groups, we often want to generalize this by including
“generators” in addition to operations, allowing us to reason about arbitrary
objects and morphisms that may not necessarily be constructible “from
nothing” using the categorical structure present. And as we did for groups,
we can do this by adding stand-alone rules to our type theory. For instance, if
we add the rules

17 We need two computation rules because we cannot prove the uniqueness part of the universal
property for functions the way we did for coproducts. See also Section 4.3.

18 When we discuss the identity type in Section 4.1, we will see that there are multiple choices
that can be made for its rules. For present purposes, the rules include “UIP” (see Section 4.1).
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� � X type � � Y type � � f : X −→ Y
(2.13)

to EMLTT, we obtain a type theory whose classifying category is the free
locally cartesian closed category generated by two objects X and Y and a
morphism f : X −→ Y. (Here X, Y, and f are “constants,” distinct from both
variables and metavariables.) Thus, given any other locally cartesian closed
category C in which we have chosen two objects A,B and a morphism
g : A −→ B, there is a unique map from this classifying category sending
X, Y, and f to A, B, and g respectively. Thus, anything constructable in type
theory with the additional rules (2.13) can be interpreted in C and yield a
result relative to A, B, and g.

Rules like (2.13) appear to correspond only to free groups, whereas
we generally also consider presented groups, with relations in addition to
generators. However, as we saw in Section 2.4, equalities can be represented
by elements of identity types; thus here the “presented” case is subsumed by
the “free” case.

Constant rules like (2.13) allow us to reason about small collections of data
in arbitrary structured categories. In addition, given a category C , there is a
way to reason about “all of C and nothing else,” by adding a constant for every
object, morphism, and equality in C . This yields a type theory Lang(C ) called
the internal language of C . It is closely related to the “Mitchell–Benabou
language” and “Kripke–Joyal semantics” of a topos [18, 47, 59, 81], which
are type theories of a sort but, unlike ours, do not include general dependent
types.

If we fix some collection of type constructors, corresponding to a notion of
structured category, then we can define a “category of type theories” based
on these type constructors (with varying choices of constants). Then Ctx
becomes a functor from this category to an appropriate category of structured
categories and Lang into a right adjoint (or perhaps, depending on how we
define the category of type theories, an inverse equivalence) to Ctx; see Figure
6.2. The counit of this adjunction is a functor Ctx(Lang(C )) −→ C that
interprets the internal language of C in C itself; this gives a “complete”
syntax for constructions in C , analogous to the canonical presentation of a
group G involving one generator for each element and one relation for each
equality.

I have just sketched an appealing general picture of the correspondence
between type theories and categories. However, proving the correctness of this
picture can be exceedingly technical. Seely’s original proposal [101] contained
a subtle technical flaw, later fixed by Hofmann and others [31, 36, 50, 51]. But
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Type theory (syntax) Categories (semantics)

classifying category

internal language

A −→ B �B��A�

(x =A y) �A� −→ �A� × �A�

b[a/x] �b� ◦ �a�

Figure 6.2 Syntax and semantics.

even now, complete proofs of the freeness of Ctx(T) are quite involved and
hard to find: they exist for some collections of type constructors [31, 56, 59,
69, 108], and everyone expects all other cases to be analogous, but at present
there is no general theorem. Indeed, even a precise definition of “any type
constructor” is still lacking in the literature. This is a current research problem,
but I expect it to be solved one day; so I will say no more about this issue,
except for a brief discussion of the (even more difficult) higher-categorical
situation in Section 4.6.

2.6 Subobject Classifiers and Universes

There is one class of type constructors, called universes, that merits some
individual discussion. The simplest of these is a subobject classifier, which
categorically is a monomorphism T: 1 −→ � of which every other monomor-
phism is uniquely a pullback. In the category of sets, � = {T,F} is the set of
truth values, and for a subset A ⊆ B we have A = χ−1

A (T), where χA : B −→ �

is the characteristic function of A.
If we identify T and F with a 1-element set and a 0-element set, respectively,

then up to isomorphism, the characteristic function of A ⊆ B sends each b ∈ B

to its preimage under the inclusion A ↪→ B. This leads us to represent � by a
type whose elements are themselves types, with a rule like

� � P : �

� � P type
(2.14)

In particular, we have x : � � x type, and any other instance of (2.14)
can be obtained from this “universal case” by substitution. Semantically, the
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interpretation of � � P : � is a morphism �P � : ��� −→ ���, while the
interpretation of � � P type is an object of the slice over ���, that is,
a projection morphism ��,x : P � −→ ���. These two morphisms fit into a
pullback square:

��,x : P � ��

��
�


�x : �,y : x�

��
���

�P �
�� ���

Thus, the morphism on the right (the interpretation of x : � � x type) is
the universal monomorphism T: 1 −→ ��� for a subobject classifier (and in
particular, �x : �,y : x� is a terminal object).

The fact that any � � P : � classifies a monomorphism means equivalently
that the types in � (the fibers of the corresponding objects of Ctx/���) should
“have at most one element.” We thus express it by the following rule:

� � P : � � � a : P � � b : P

� � trP (a,b) : a = b
. (2.15)

This says that the diagonal ��,x : P � −→ ��,x : P,y : P � has a section; hence
it is an isomorphism and so ��,x : P � −→ ��� is mono. (The notation trP stands
for “truncation”; see Section 3.1.) The universality of T: 1 −→ ��� means that
any type with “at most one element” is equivalent to one in �:19

� � P type �,x : P,y : P � p : x = y

� � Rsz(P,xy.p) : �
(2.16)

� � P type �,x : P,y : P � p : x = y

� � rszP,xy.p : (Rsz(P,xy.p) −→ P) × (P −→ Rsz(P,xy.p))
. (2.17)

The notations Rsz and rsz stand for “resize,” indicating that P may be “too big

to fit inside” �, but there is an equivalent type that does.
More generally, we can consider a universe type U , whose elements are

types without any monomorphy restriction.20 That is, we have the analogue
of (2.14),

� � P : U

� � P type
,

19 The astute reader may notice that something is missing; we will return to this in Section 4.
20 It is common in type theory to denote U by “Type,” and similarly to denote � by “Prop.” The

latter will make more sense in Section 3.1.



Homotopy Type Theory 349

but no analogue of (2.15). The direct analogue of (2.16) would yield in
particular Rsz(U ) : U , making the theory inconsistent due to Cantorian-type
paradoxes. Instead we assert that U is closed under the other type constructors,
for example,

� � P : U �,x : P � Q : U

� �∏x:P Q : U
,

� � P : U �,x : P � Q : U

� �∑x:P Q : U
,

� � P : U � � a : P � � b : P

� � (a = b) : U
.

Thus U is similar to a set-theoretic “Grothendieck universe” or inaccessi-
ble cardinal. Of course, we can also have many universes Ui of different
sizes.

Categorically, subobject classifiers are characteristic of elementary toposes,
while universe objects arise in algebraic set theory [6, 61]. But we will see
in Section 4 that universes really come into their own when we pass to
(∞,1)-categories and incorporate Voevodsky’s univalence axiom.

2.7 Toposes of Spaces

The preceding general theory tells us that given any category of spaces,
if we choose a collection of type constructor “packages” corresponding to
universal properties that exist in that category, the resulting type theory can
be used to reason “internally” about that category. Turning this around, for
each “package” we want to include in our type theory, there is a corresponding
restriction on the categories of spaces in which we can model it.

Starting with the least restrictive case, simple type theory (i.e., no dependent
types) requires only a category with finite products, which includes practically
any category of spaces. Nothing further is required to interpret binary product
types A × B and the unit type 1. To interpret the coproduct type A + B

and the empty type ∅, we need a category with finite products and finite
coproducts, with the former distributing over the latter (this is because the
elimination rule for coproducts can be applied anywhere in a context, so that
for instance �x : A+B,z : C� also has the universal property of �x : A,z : C�+
�y : B,z : C�).

To interpret dependent type theory, we require at least finite limits (since
substitution into dependent types is interpreted by pullback). This rules out a
few examples, such as smooth manifolds, but these can generally be embedded
into larger categories having limits, such as “generalized smooth spaces” (see,
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e.g., Chapter 1). Nothing further is required to interpret the dependent sum
type

∑
x:A B and the identity type (x = y).

The function type A −→ B in simple type theory can be interpreted in any
cartesian closed category, but in dependent type theory it requires a locally
cartesian closed category, since type constructors can be applied in any context
(i.e., in any slice category). Local cartesian closure also allows us to interpret
the dependent function type

∏
x:A B.

Ordinary topological spaces are not cartesian closed, but various slight
modifications of them are. The best-known of these, such as compactly
generated spaces, are not locally cartesian closed, but there are others that are,
such as subsequential spaces [58] (sets with a convergence relation between
sequences and points) or pseudotopological spaces [28, 122] (similar, but
using filters instead of sequences). In such categories, a sequence of functions
fn : X −→ Y converges to f∞ : X −→ Y in Y X if for any convergent
sequence xn � x∞ in X, the sequence fn(xn) converges to f∞(x∞) in Y ;
this is sometimes called continuous convergence. In fact, subsequential and
pseudotopological spaces both form quasi-toposes [123], as do various kinds
of generalized smooth spaces (see [14] and also Iglesias-Zemmour’s chapter
on diffeologies, Chapter 1).

It is much less clear what sort of “space” could function as a subobject
classifier or a universe. One guess for a subobject classifier that does not
work is the Sierpinski space � (the set {T,F} where {T} is open but {F} is
not). Continuous maps X −→ � classify open subspaces of X, but not every
mono is open. If instead we give the set {T,F} the indiscrete topology, then
it classifies arbitrary subspaces, but the monos of topological spaces (and
their relatives) include all injective continuous functions, which need not be
subspace inclusions.

Thus, a subobject classifier � has to have sufficient structure that maps into
it can encode chosen topologies on subsets. For instance, if Y −→ X is mono
and a sequence (xn) lying in Y converges (in X) to a point x∞ also lying in
Y , then it might or might not also converge to x in the topology of Y . Thus,
in defining a map χY : X −→ � classifying Y , even after we know that xn and
x∞ are sent to T (hence lie in Y ), we need an additional degree of freedom
in defining χY to specify whether or not the convergence xn −→ x∞ is still
“present” in Y .

Obviously this is impossible with classical topological spaces, but there are
categories of spaces in which such an object exists: the trick is to make the
“spatial structure” into data rather than a property. For instance, the quasi-
topos of subsequential spaces sits inside the topos of consequential spaces.
A consequential space is a set equipped with, for every sequence (xn) and
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point x∞, a set of “reasons why” or “ways in which” (xn) converges to x∞.
(Of course, this set might be empty, i.e., (xn) might not converge to x∞ at
all.) The axioms of a subsequential space are then promoted to operations on
these “witnesses of convergence,” which then have to satisfy their own axioms.
See [58] for details.21

The category of consequential spaces is a topos, so it is locally cartesian
closed and has a subobject classifier. The latter has two points {T,F}, but
many different “witnesses” that the constant sequence at T converges to T,
allowing the characteristic function of a mono Y −→ X to retain information
about the topology of Y . One might think we only need two such witnesses,
to record whether a convergent sequence xn � x∞ in X also converges in
Y ; but in fact we need to record which subsequences of {xn} also converge
to x∞ in Y . We can exactly determine the witnesses of convergence in �

by its universal property: they must be the sub–consequential spaces of the
“universal convergent sequence” N∞ (the one-point compactification of N).
See [58, Corollary 4.2].

The category of consequential spaces also has universe objects U . Roughly
speaking, this means that the collection of all consequential spaces (bounded
in size by some cardinality) can be made into a consequential space. By the
desired universal property of U , a witness that a sequence of spaces (Xn)

converges to X∞ consists of a consistent way to make
(∐

n Xn

) . X∞ into
a consequential space over N∞, which roughly means giving a consistent
collection of witnesses for convergence of sequences xn ∈ Xn to points
x∞ ∈ X∞. In [43] it is shown that for any (Xn) and X∞ there is at least
one such witness, so the topology of U is “indiscrete” in some sense (though
unlike for a classical indiscrete space, interesting information is still carried by
how many such witnesses there are).

Generalizing from consequential spaces, for any small collection of spaces
T, we can build a topos whose objects are “spaces” whose “topology” is
determined by “probing” them with maps out of T. More precisely, we take
the category of sheaves for some Grothendieck topology on T. Consequential
spaces are the case when T = {N∞}, so that a space is determined by its
“convergent sequences.”

Another reasonable choice is T = {Rn}n∈N, yielding spaces determined
by a notion of “continuous paths, homotopies, and higher homotopies.”22 Urs
Schreiber has suggested to call these continuous sets. Just as a sequence in a

21 The term “consequential space” should not be blamed on [58], who considered it but then
discarded it. I have chosen to use it anyway, since I know no other term for such spaces.

22 To be precise, we take the full subcategory of spaces T = {Rn}n∈N with the Grothendieck
topology of open covers, whereas consequential spaces are obtained from the one-object full
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consequential space can “converge to a point” in more than one way, a path in
a continuous set can “be continuous” in more than one way. By the adjunction,
continuous paths R −→ Y X are equivalently homotopies R × X −→ Y .
Similarly, in U , the witnesses to continuity of a “path of spaces” {Xt }t∈R
are the ways to make

∐
t∈R Xt into a space over R, which roughly means a

consistent collection of witnesses for the continuity of “paths” consisting of
points xt ∈ Xt for all t ∈ R. Consequential spaces and continuous sets are
similar in many ways, but different in others, and each has advantages and
disadvantages.

If we restrict the morphisms of T to preserve some additional structure
on its objects, we obtain a topos whose objects have a version of that
structure. For instance, if we choose T = {Rn}n∈N but with only the smooth
functions between them, then we obtain a topos whose objects are a kind of
generalized smooth space, in which any given path or homotopy has a set of
“witnesses to smoothness” rather than witnesses to continuity; we call these
smooth sets. Just as the quasi-topos of subsequential spaces sits inside the
topos of consequential spaces, the quasi-topos of diffeological spaces (and
hence also the usual category of smooth manifolds) sits inside the topos of
smooth sets.

There are likewise toposes of “algebraic” spaces, as well as toposes
containing “infinitesimal” or “super” spaces; see [14, 89] and [2, Chapter 5].

2.8 Why Spaces?

We can now address the question mentioned in Section 1 of why so many
objects in mathematics come naturally with spatial structure. The short answer
is that since type theory can be a language for all of mathematics, any
construction of a mathematical object can be phrased in type theory and then
interpreted into any of these toposes of spaces, thereby yielding not just a set
but a space.

However, this answer is missing something important: to say that a set X

comes naturally with spatial structure is to say that we have a canonically
defined space whose underlying set is X, and simply being able to interpret the
construction of X in a topos of spaces does not ensure this. If the “underlying
set” functor from our topos of spaces to the category of sets preserved
all the structure used to interpret type theory (limits, colimits, dependent
exponentials, universes, and so on – this is called a logical functor), then

subcategory {N∞} with the “canonical” Grothendieck topology. This difference in topology is
the actual source of a significant amount of the differences between the two toposes.
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classifying category

�X�

unique
spaces

�X�spaces

unique
underlying set

sets

�X�sets

Figure 6.3 A hypothetical logical underlying-set functor.

this would follow from the initiality of the classifying category. Namely, the
unique functor from the classifying category to the category of sets would
factor uniquely through our topos of spaces, implying that the image of X

in sets would be the underlying set of the image of X in spaces, as shown in
Figure 6.3.

In general, the underlying-set functor does not preserve all the structure.
But it does preserve quite a lot of it. In fact, for all the categories of spaces
considered above, the underlying-set functor fits into a string of adjunctions:

topos of spaces

�

��
topos of sets

�

��

' ' ∇
��

where � is the underlying-set functor, � equips a set with a “discrete topol-
ogy,” and ∇ equips it with an “indiscrete topology.” (In consequential spaces,
the discrete topology says that only eventually constant sequences converge,
while the indiscrete one says that every sequence converges [uniquely] to every
point.) Moreover, � preserves finite limits, and � and ∇ are fully faithful; this
makes the category of spaces into a local topos over sets (see [57] or [59,
Section C3.6]).

In particular, this string of adjunctions implies that � preserves all limits
and colimits. In the above examples, � also preserves the subobject classifier
and the universes – this is clear from our explicit descriptions of these above,
and categorically it implies that the spaces are also a hyperconnected topos.
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The main thing that � does not preserve is function-spaces. However, it does
preserve function-spaces whose domain is discrete: for any set X and space Y

we have �(Y �X) ∼= (�Y )X, and likewise for dependent exponentials. (This
follows formally from the fact that � preserves finite limits.)

The upshot is that any mathematical construction can be interpreted as a
space, and as long as the only functions it uses have a domain that (when
interpreted as a space) is discrete, the resulting space will be a topology on the
set that we originally thought we were defining. This restriction makes sense:
once we start using functions with nondiscrete domain, in the world of spaces
we have to consider only continuous functions, causing a divergence from the
world of sets. Moreover, in this case often the world of spaces is the “correct”
one: we should restrict to continuous maps between profinite groups, and use
only continuous homomorphisms in the Pontryagin dual.

The next natural question to ask is, when does a given mathematical
construction inherit a nondiscrete topology? Categorically, this means asking
which constructions are (not) preserved by �. Since � is a left adjoint, it
preserves colimits, and as remarked it preserves finite limits; but in general
it does not preserve much more than this. Thus, nontrivial topologies can arise
from (1) infinite limits, (2) function-spaces (which, in the category of sets, are
just particular infinite products), or (3) the subobject classifier or a universe.

Many constructions that automatically inherit spatial structure are obtained
by infinite limits. For instance, the profinite completion is a limit of finite
quotients. In the topos of consequential spaces, this infinite limit generally
has its expected topology, since “take the convergent sequences” is a limit-
preserving functor from classical topological spaces to consequential spaces.

By contrast, for the topos of continuous sets (and similarly smooth sets),
� does preserve infinite limits, and indeed it has a further left adjoint (see
Section 5). Thus, the profinite completion in these toposes gets the discrete
topology (intuitively, profinite topologies are incompatible with the “manifold-
like” structure of a continuous set). More generally, nontrivial continuous-set
structures can arise only in constructions that include the subobject classifier or
a universe. Perhaps the most important example of such a space is the real num-
bers R, but before discussing them, we need to talk about logic in type theory.

3 Toward Synthetic Topology

In Section 2.1 I claimed that type theory presents a free “universe of math-
ematics.” So far, we have seen that type theory contains type constructors
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such as products, coproducts, and exponentials that look like the standard
operations on sets. Moreover, when taken literally (rather than as “code” for
objects and morphisms in a category), the syntax of type theory talks about
elements of types, and the rules stipulate that the elements of product types,
exponential types, and so on are exactly what we would expect. Thus, any
mathematical construction that is classically performed with sets, such as
building the rational and real numbers out of the integers, can be performed
with types instead.

However, there is more to mathematics than constructing things: we also
like to prove things about them. The formal system of ZFC set theory is
formulated inside of first-order logic, so that proving is the “basic act of
mathematics”: what are called “constructions” are actually just existence (or
existence-and-uniqueness) proofs. But in type theory, constructions are the
“basic act of mathematics” – so what has happened to proofs?

3.1 Propositions as Types

In set theory, a property P of elements of a set A can be equivalently
expressed as a subset of A, namely {x ∈ A | P(x)}. Categorically, this is
a monomorphism into A, or equivalently its characteristic function A −→ �.
This provides us with the means to define logic inside of type theory: we declare
that by a property of elements of a type A we mean a judgment x : A � P : �.
Similarly, by a proposition23 we mean simply an element of �: that is, a type
having at most one element. We regard such a proposition as “true” when it
does have an element. That is, the proposition corresponding to P : � is “P

has an element.” Similarly, by a proof of P : � we mean a construction of an
element of P .

We have already seen an example of this way of representing properties:
the equality type x : A,y : A � (x = y) type, which in Section 2.4 we said
represents the diagonal ,A : �A� −→ �A� × �A� as an object of Ctx/(�A�×�A�).
Since ,A is a monomorphism, it is classified by a map �A�×�A� −→ �, which
is the binary relation of equality. In the category of sets, this map sends (x,x)

to T, since the fiber of ,A over (x,x) has one element, and sends (x,y) to F if
x �= y, since then the fiber of ,A over (x,y) is empty. (But see Section 4.)

This identification of propositions with “types having at most one element”
is close to, but not quite, the usual meaning of the phrase propositions as

23 We use proposition in the logician’s sense of something that one might try to prove, rather than
the other common meaning of something that has been proven. Note that in [112], types with
at most one element are called mere propositions rather than just “propositions.”
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� � A type

� � ‖A‖ : �

� � A type � � a : A

� � |a| : ‖A‖

� � A type � � B : � �,x : A � b : B � � a : ‖A‖
� � ptr(x.b,a) : B

� � A type � � B : � �,x : A � b : B � � a : A

� � ptr(x.b,|a|) ≡ b[a/x]

Figure 6.4 Propositional truncation.

types. The latter refers to allowing any type to be called a proposition, rather
than only those with at most one element. However, our choice (which is
increasingly common) relates better to the standard practice in mathematics
whereby once a proposition has been proven, the particular proof given has no
further mathematical (as opposed to aesthetic or conceptual) importance.

One reason the identification of propositions with (certain) types is so
convenient is an observation called the Curry–Howard correspondence [37,
53, 84, 120]: the operations of logic are already present in type theory as
constructions on types. For instance, if P and Q are propositions, then so is
P ×Q; and since it has an element just when P and Q do, it is natural to call it
“P and Q.” Similarly, P −→ Q is “if P then Q,” since a function f : P −→ Q

transforms the truth of P into the truth of Q, while
∏

x:A P (x) is “for all x : A,
P(x),” since a dependent function f :

∏
x:A P (x) assigns to any x : A a proof

of P(x). It is also reasonable to regard P −→ ∅ as “not P ,” since a function
f : P −→ ∅ can only exist if P is empty (i.e., false).

We might expect P +Q to be “P or Q,” but P +Q may not be a proposition
even if P and Q are. For this purpose we introduce a new type constructor
called the propositional truncation,24 whose rules are shown in Figure 6.4.
(The notation ptr just stands for “propositional truncation.”) Intuitively, ‖A‖ is
the proposition “A has at least one element”; while categorically, � � ‖A‖ : �

presents the image of the projection ��,x : A� −→ ���. The introduction rule
says that if we have an element of A, then A has at least one element. The
elimination rule says that if we know that A has at least one element, then when
proving a proposition we may assume given an element of A. (Removing the
hypothesis that B is a proposition would imply a choice principle that is too
strong even for classical mathematics; see Footnote 36.)

24 Propositional truncation has a long history and many variations, with names such as squash
type, mono-type, and bracket type (see, e.g., [12, 33, 82, 87, 112]).



Homotopy Type Theory 357

Now we define “P or Q” to be ‖P + Q‖, and similarly “there exists an
x : A such that P(x)” to be

∥∥∑
x:A P (x)

∥∥. As observed by Lawvere [73], this
definition of the existential quantifier can be described categorically as the left
adjoint to pullback between posets of subobjects Sub(���) −→ Sub(��,x : A�).
The untruncated

∑
x:A gives the left adjoint to the pullback between slice

categories Ctx/��� −→ Ctx/��,x:A�, and the truncation reflects it back into
monomorphisms. Similarly, the universal quantifier “for all x : A, P(x)” is the
right adjoint of the same functor: since the right adjoint

∏
x:A between slice

categories already preserves monomorphisms, no truncation is necessary.
Rather than being the existential quantifier, the untruncated

∑
x:A P (x)

plays the role of the subset {x ∈ A | P(x)}. Its elements are pairs of an
element x : A and a proof that P(x) holds, and since P(x) is a proposition,
to give an element of P(x) contains no more information than that P(x) “is
true.” Thus we may consider the elements of

∑
x:A P (x) to be “the elements

of A such that P(x) is true.” The type of all subsets of A, mentioned in Section
2.4, is just “A −→ �.”

In conclusion, instead of describing mathematics inside of logic, as is done
by ZFC set theory, in type theory, we “define logic inside of mathematics.”
One advantage of this is that, as we have seen, type theory can be interpreted in
suitably structured categories, yielding an intrinsic “logic” internal to any such
category. Another is that it allows us to draw finer distinctions, thereby actually
representing informal mathematics more faithfully, in the following way.

We mentioned above that there is a tradition in type theory that interprets
“there exists an x : A such that P(x)” as

∑
x:A P (x) rather than

∥∥∑
x:A P (x)

∥∥.
In addition to its mismatch with the standard practice of mathematics,
when done indiscriminately, this can actually lead to inconsistencies; see
[112, Section 3.2] and [42]. However, there are places in ordinary mathematics
where a “there exists” statement is more naturally interpreted as

∑
x:A P (x).

For instance, the Yoneda lemma Nat(C (−,a),F ) ∼= F(a) does not mean
that there merely exists such an isomorphism but that we have specified a
particular one. ZFC set theory, being formulated inside first-order logic,
forces every “theorem” to be a “mere existence” statement; type theory frees
us from this straitjacket, allowing us to directly express “constructions” in
addition to “proofs.”

3.2 Constructive Logic

When the logical connectives are defined according to the Curry–Howard
correspondence, most of the basic laws of logic can be derived from the rules
for the basic type constructors. For instance, one of de Morgan’s laws,
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(¬P ∧ ¬Q) −→ ¬(P ∨ Q)

(where as usual ∧, ∨ ,¬ mean “and,” “or,” and “not”), has the following proof:

λx.λy.ptr(case(∅,pr1(x)(y),pr2(x)(y),y),y) : (¬P ∧ ¬Q) −→ ¬(P ∨ Q).

(Of course, it would be a heavy burden to carry around such long terms
whenever we want to use de Morgan’s law. But writing out a fully formalized
proof in ZFC is no easier – in fact, often it is much harder! In both cases the
formalism simply justifies our ordinary mode of mathematical writing.)

However, we cannot derive from the rules of type theory any proofs of the
following classical tautologies of logic:

¬(P ∧ Q) −→ (¬P ∨ ¬Q), ¬¬P −→ P, P ∨ ¬P,

¬(∀x,P (x)) −→ (∃x,¬P(x)).

In other words, the logic we obtain from propositions-as-types is constructive
or intuitionistic logic. Constructive logic acquired a bad name due to some fun-
damentalists in the early 20th century, but in fact it is natural and unavoidable
once we recognize that type theory is a syntax for categories, and that sets are
not the only category in the world (see [16]). The above tautologies are simply
not true in most categories of spaces.

For example, consider the proposition
∏

x:A P (x) ∨ ¬P(x), where A is a
type and P : A −→ � a property, and let us interpret this in a “topological”
topos such as those discussed in Section 2.7. Now P classifies a monomor-
phism B � A, which as mentioned previously need not be a subspace
embedding. Similarly, ¬P classifies a different monomorphism ¬B � A,
which turns out to be the “maximal mono disjoint from B.” In other words, ¬B

contains all the points of A that are absent from B, and also “all the topology”
on those points that is absent from B (e.g., all the convergent sequences, or all
the continuous paths). However, (λx.P(x) ∨ ¬P(x)) : A −→ � classifies their
union B ∪ ¬B as monos into A, which is not generally a subspace even if B

is: it contains all the points of A, but its topology is that of the disjoint union
B . ¬B. Thus the mono B . ¬B −→ A has no continuous section, and so we
cannot assert

∏
x:A P (x) ∨ ¬P(x).

In other words, constructive logic is simply more general than classical
logic. As always, using fewer assumptions – here, assumptions about logic
– leads to a more general conclusion – here, one that applies to more
categories.

There is also another sense in which constructive logic is more general:
classical logic can be embedded in constructive logic. Specifically, the subset
�¬¬ of � consisting of those P such that ¬¬P −→ P (formally, the �-type
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∑
P :�(¬¬P −→ P)) admits logical operations satisfying the laws of classical

logic. In fact, �¬¬ is closed under all the ordinary logical operations except
for “or” and “there exists,” and we can define P ∨′ Q to be ¬¬(P ∨ Q) and
∃′x : A to be ¬¬∃x : A. (Note the similarity to how in Section 3.1 we applied
‖−‖ to + and

∑
to get ∨ and ∃.) In categories of spaces, the subtypes whose

classifying map factors through �¬¬ generally coincide with the subspace
embeddings.

Using �¬¬ gives us a different “logic” that is always classical but is
not as well behaved in other ways. For instance, it fails to satisfy function
comprehension (aka the principle of unique choice): “if for all x : A there is a
unique y : B such that P(x,y), then there is f : A −→ B such that P(x,f (x))

for all x : A.” However, there is a subuniverse of types where �¬¬-logic does
behave well. Define a type A to be a ¬¬-sheaf if the “constant functions”
map (λx.λp.x) : A −→ (P −→ A) is an isomorphism for any P : � such
that ¬¬P . The world of ¬¬-sheaves in constructive mathematics behaves
just like the world of classical mathematics, with both classical logic and
function comprehension. In categories of spaces, the ¬¬-sheaves are generally
the indiscrete spaces. (If you were expecting to hear “discrete” instead of
“indiscrete,” wait for Section 5.3.)

On the other hand, it is always possible to add classical logic globally to
type theory as a rule:

� � P : �

� � lem(P ) : P ∨ ¬P
.

(This rule, called the law of excluded middle (LEM), suffices to prove all the
other classical tautologies.) This would mean restricting our syntax to apply
only to “boolean” categories, such as sets, and excluding most topological
ones, just as adding the relations gh = hg to a free group turns it into a
free abelian group, with a more restricted universal property. Similarly, we
can add a type-theoretic version of the axiom of choice (AC), which is not
provable25 even after adding LEM, and whose precise formulation we leave to
the reader.26

25 The reader may have heard rumors that the axiom of choice is actually provable in type theory
without any added axioms. It is true that one can prove a statement that looks like the axiom of
choice if arbitrary types are allowed to play the role of “propositions,” i.e., if all propositional
truncations are removed from the definitions of the logical operations in Section 3.1. But from
our perspective, this provable statement is not at all the axiom of choice, since its hypothesis
already essentially carries along the data of a choice function.

26 There is also a subuniverse like the ¬¬-sheaves that satisfies AC as well as LEM: one
can build Gödel’s “constructible universe” L (no relation to “constructive logic”) inside the
¬¬-sheaves. However, this relies on first-order logic and ZFC-style membership-based set
theory; no category-theoretic or type-theoretic construction of such a subuniverse is known.



360 Michael Shulman

If we wanted only to use type theory merely as a foundation for classical
mathematics, there would be no problem with this.27 But in this chapter our
focus is on type theory as a syntax for categories of spaces, which frequently
means that we must learn to live with constructive logic (though we will see
in Section 4 that “homotopy spaces” can be compatible with classical logic).
Fortunately, this is usually not very difficult; often it suffices to rephrase things
carefully, avoiding unnecessary negations. For instance, constructively, it is
not very useful to say that a type is nonempty (¬(A ∼= ∅) or equivalently
¬¬A); instead, we use the positive statement that it is “inhabited” (∃x : A, i.e.,
‖A‖). It also often happens that a group of classically equivalent definitions
are no longer the same constructively, and we have to judiciously choose the
“correct” one. For instance, classically a set is finite just when it is not bijective
to any proper subset of itself, but constructively this is a weaker and less useful
condition; the correct definition of “finite” is “bijective to {k : N | k < n} for
some n : N.”

Once we get over this minor hurdle, we can develop mathematics on top of
type theory in basically the same way as usual. Formally, type-theoretic proofs
and constructions involve heavy manipulation of syntax (just as in any other
formal foundational system like ZFC); but as mentioned above, when actually
doing mathematics there is usually no reason to bother about this.

As a simple example, once we have the natural numbers type N, we can
define the integers Z as N+N (with appropriate structure), the rational numbers
Q as a subtype of Z × N (the “fractions a/b in lowest terms”), and the real
numbers R as a subtype of (Q −→ �) × (Q −→ �) (the two-sided Dedekind
cuts). Recall that by a “subtype of A” we mean a type of the form

∑
x:A P (x)

where P : A −→ � is a property; for instance, more formally we have

Q = ∑
r:Z×N

(
pr2(r) > 0 ∧∏n:N

(
(n | pr1(r)) ∧ (n | pr2(r)) −→ n = 1

))
.

Here pr1 and pr2 are the projections out of a cartesian product, and > and | are
relations that we have to define previously, for example,

(n | m) = (∃p : N,(p · n = m)
)

=
∥∥∥∑p:N(p · n = m)

∥∥∥,
where multiplication has been previously defined, and so on. We can then
proceed to define all the usual functions and properties of numbers of all sorts
and build the rest of mathematics on top of them.

27 There are many toposes, other than the category of sets that satisfy both LEM and AC. They
are roughly the same as forcing models of ZFC. However, none of them are “spatial” in the
sense we care about here.
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When this syntax is interpreted into the category of sets, it of course yields
the usual sets of numbers. The point, however, is that if we instead interpret it
into a category of spaces, the types of numbers automatically inherit a spatial
structure, and usually that spatial structure is the intended one! For instance,
in the toposes of consequential spaces or continuous sets from Section 2.7,
the real numbers type R is interpreted by the real numbers with their usual
Euclidean topology (see [58, Proposition 4.4] and [81, Theorem VI.9.2]).

Note that the definition of R using Dedekind cuts (which we may denote Rd

for emphasis) fulfills the requirement for a nontrivial continuous-set structure,
since it uses �. However, not all the classically equivalent definitions of R
remain equivalent constructively. For instance, the Cauchy reals Rc, defined
by taking equivalence classes of Cauchy sequences, come with an inclusion
Rc −→ Rd that is not generally surjective. In consequential spaces, we have
Rc

∼= Rd ; but in continuous sets, Rc gets the discrete topology. Thus, it is
usually better to regard the Dedekind real numbers as “the” real numbers.

Since the Dedekind reals R have their usual topology in our toposes, other
types built from them, such as the circle S1 = { (x,y) : R × R | x2 + y2 = 1

}
,

the complex numbers C ∼= R×R, or matrix groups GLn(R) ⊆ Rn2
, also have

their usual topologies. Furthermore, all functions definable in type theory are
interpreted by continuous maps; so the fact that we can define addition of real
numbers in type theory tells us automatically that R is a topological group,
and so on. Analogous facts are true for the other constructions leading to
nontrivial topologies mentioned in Section 2.8, such as profinite completion.
Thus, we have finally made good on our promise from Section 1 to provide a
formal system for describing “groups with background spatial structure” that
is sufficiently flexible to include all different kinds of spatial structure at once,
with the added benefit of a uniform way of constructing the standard examples.

The fact that “the real numbers” defined in type theory are interpreted
in some categories by the usual space of real numbers has an interesting
consequence: constructively, we cannot define28 any discontinuous function
R −→ R. In particular, the usual examples of discontinuous “piecewise”
functions R −→ R, such as the Heaviside step function

f (x) =
{

0 if x < 0

1 if x ≥ 0

cannot be defined constructively – or, more precisely, their domain cannot be
shown constructively to be all of R (that being tantamount to the assertion

28 To be precise, we cannot define such a function “in the empty context,” i.e., without any ambient
assumptions.
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that every real number is either < 0 or ≥ 0, which is essentially an instance
of LEM). That is, restricting ourselves to constructive logic automatically
“notices,” and forces us to respect, a canonical and implicit topological
structure on types such as R. In the next section we briefly discuss another
such implicit structure.

3.3 A Digression on Computation

While our primary concern here is with the suitability of type theory as a “logic
of space,” historically, it developed rather differently. The first type theory,
which bore little resemblance to its modern descendants, was introduced by
Russell to avoid his eponymous paradox. After other logicians, such as Gödel,
refined Russell’s type theory in various ways, Church [29, 30] combined it
with his “λ-calculus” to obtain what today we can see as a typed functional
programming language. The dependent type theory we are using here is mainly
due to Martin-Löf [84, 85], whose intent was to give “a full scale system
for formalizing intuitionistic mathematics” in the sense of Bishop [20, 21].
Bishop, in turn, wanted to develop a form of mathematics in which all
statements would have computational meaning, so that for instance whenever
we assert something to exist we must have a method for finding it. This led
him, following the earlier pioneering work of Brouwer, to reject the law of
excluded middle, since in general there can be no method for deciding which
of P or ¬P holds.

Thus, type theory was originally conceived as a formal basis for a
mathematics that would be “constructive” in this computational sense. It is
remarkable that it turned out to also be a flexible system for reasoning in
arbitrary categories! The existence of internal languages of categories was
apparently first recognized for elementary toposes [22, 68, 88]; the “Mitchell–
Benabou language” of a topos is a sort of type theory in which the only
dependent types are those in �. The generalization to Martin-Löf’s type
theory was first written down by Seely [101], and corrected and refined by
others as discussed in Section 2.5.

From our category-theoretic point of view, the computational aspect of
type theory is partly explained by a different class of models. In addition to
categories of “spaces” where every map is continuous, there are categories
of “computable objects” [54, 115] in which every map is computable. Thus,
everything in type theory must be “potentially computable” in addition to
“potentially continuous.” In particular, just as any constructively definable
function R −→ R must be continuous, any constructively definable function
N −→ N must be computable.
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However, there is more to the computational side of type theory than this:
its syntax is actually a programming language that can be executed. That is,
not only does every term f : N −→ N represent a computable function, but its
definition is an algorithm for computing that function. The “execution” of such
a program is essentially the type-theoretic version of the “reduction” algorithm
for free groups that simplifies (g((hg)−1((hh)g−1)))h−1 to hg−1h−1.

Specifically, these reductions implement the “computation rules” men-
tioned in Section 2.5 (hence the name). For instance, the first computation
rule in Figure 6.1 can be interpreted as a “reduction” or “normalization” step
allowing us to “simplify” (λx.M)(N) to M[N/x]. (This partially explains
why we used a different equality symbol ≡; see also Section 4.7.) In good
cases, these reduction steps are guaranteed to terminate at a unique “value” or
“normal form,” analogous to the reduced words for elements of a free group.
Reduction in a free group is a fairly simple process, but since type theory is
complicated enough to encode all of mathematics, its notion of “reduction”
can serve as a general-purpose programming language.29

This makes type theory a convenient language for reasoning about computer
programs, and as such it has many adherents in computer science. Moreover,
we can implement a “compiler” for type theory on a physical computer,
which then also serves as a proof checker for mathematical arguments.
Thus, mathematics done in type theory not only can be interpreted in many
categories but can have its correctness formally verified in this way. Such
computerized “proof assistants” built on type theory play an increasingly
important role in computer science, and are slowly growing in importance in
mathematics.

One thing to note is that the computational interpretation of type theory is
rather “fragile” and depends on the details and interactions of all the rules.
Adding new rules can cause the reduction algorithm to loop, diverge or give
up; while adding axioms (such as LEM and AC) can cause it to stop before
reaching a “value.” The latter is not surprising, since LEM and AC assert
that certain things exist or are true without giving any way to construct them,
thereby allowing us to define terms of type N like “1 if the Riemann hypothesis
is true and 0 if it is false” that no terminating algorithm can possibly simplify
to an “answer.” (This does not prevent us from using computer proof assistants
to check proofs in such type theories, however.)

29 This programming language is not technically “Turing-complete,” since all its “programs” must
terminate; otherwise, we could prove a contradiction with a divergent computation. But it can
still encode all computable functions, e.g., with a partiality monad [25, 38].
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Since this book is about space rather than computation, I will not say
much more about the computational side of type theory. However, it is
worth pointing out that computation and topology are actually closely related.
As first recognized by Scott [98–100], computational objects often come
naturally with, or are represented by, topologies representing the fact that
a finite computation can only consume a finite amount of data. In fact,
Brouwer’s original intuitionism was also arguably more “topological” than
computational. For further discussion of these ideas, see for instance [40, 116].

3.4 Synthetic Topology

So far we have seen that the types in type theory admit interpretations as
various different kinds of space. Thus, one might say that they have latent or
potential spatial structure: they might be spaces, but they also might not have
any nontrivial spatiality, depending on where we interpret them. Moreover,
they also have other latent structures, such as computability.

Until now we have considered mainly the aspects of types that are indepen-
dent of their potential spatial structure, where the topology simply comes along
for the ride. However, some spatial aspects of types are visible inside of type
theory, without needing to interpret them first in some category. This leads to
subjects called synthetic topology and synthetic differential geometry.

One important observation is that in many cases we can detect topology
using structures that already exist in type theory. For instance, following [43],
define N∞ to be the type of nonincreasing binary sequences:

N∞ = ∑
a:N−→2

∏
n:N(an+1 ≤ an)

where 2 is the “boolean” type with two elements 0 and 1. Then we have an
injection i : N −→ N∞ where i(m)n = 1 if m < n and 0 otherwise, and
we also have an element “∞ : N∞” defined by ∞n = 1 for all n. In the
topos of consequential spaces, N∞ is interpreted by the “actual” one-point
compactification of N; thus it is sensible to define a convergent sequence in
a type A to be a map N∞ −→ A. In this way, without assuming any axioms,
we see that every type automatically has a structure like a consequential space,
and every function is automatically “continuous” in the sense of preserving
convergent sequences.

Of course, the actual interpretation of N∞ depends on the category: in the
topos of continuous sets, it yields N . {∞} with the discrete topology, so that
every sequence “converges” uniquely to every point. However, the structure of
continuous sets is detectable internally in a different way: define a continuous
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path in a type A to be a map R −→ A out of the (Dedekind) real numbers.
This gives the expected answer for both consequential spaces and continuous
sets, since in both cases R has its usual topology. We will come back to this in
Section 5.

These internally defined “topologies” are only “potentially nontrivial”: for
example, if we assume LEM, then every sequence converges uniquely to every
point and every path is uniquely continuous. If we want to ensure that they
definitely are nontrivial, we can assert “nonclassical axioms” that contradict
LEM, excluding the category of sets but retaining topological models. For
instance, we could assert that the only “convergent sequences” in R are those
that converge in the ε-N sense, or that every “continuous path” in R is
continuous in the ε-δ sense.30

Convergent sequences and continuous paths are “covariant” notions of
topology, that is, they are defined using maps into a type. We can also describe
“contravariant” notions of topology synthetically, involving maps out of a type.
For instance, with continuous sets in mind, we can define open subsets as
the preimages of open intervals under functions A −→ R. Alternatively, we
can construct or postulate a subtype � ⊆ � behaving like the Sierpinski
space (usually called a dominance), and define an open subset to be one
whose classifying map A −→ � factors through �. In a topos of sheaves on
a category T of spaces, there is an obvious choice of such a �, namely, the
sheaf represented by the actual Sierpinski space (whether or not it is in T ). On
the other hand, if we want to construct a particular � inside type theory, one
possibility is the Rosolini dominance [95]:

�Ros =
(∑

P :� ∃f : N −→ 2,
(
P ∼= ∃n : N,(f (n) = 1)

))
.

That is, �Ros is the type of propositions of the form ∃n : N,(f (n) = 1) for
some f : N −→ 2. In consequential spaces, �Ros is the Sierpinski space, so
the resulting “open subsets” are as we would expect. (But in continuous sets,
�Ros ∼= 2, so the only “open subsets” in this sense are unions of connected
components.) However we choose �, once chosen we can develop much
of classical point-set topology with these “synthetic open sets,” including
compactness, Hausdorffness, and so on. See [17, 40, 41, 111] for more
examples of this sort of “synthetic topology.” There are also other ways to
define open sets synthetically; for instance, [91] defines U ⊆ A to be open if
∀x : A,∀y : A,(x ∈ U −→ (y ∈ U ∨ x �= y)).

30 The latter statement is sometimes known as Brouwer’s theorem, since Brouwer proved it in
his “intuitionistic” mathematics using principles derived from “choice sequences.” It is not
a theorem of pure constructive mathematics, which, unlike Brouwer’s “intuitionism,” is fully
compatible with classical principles like excluded middle, though it does not assume them.
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It is more subtle to obtain a synthetic theory of smoothness, since smooth-
ness does not arise automatically from constructive logic the way that continu-
ity and computation do. Indeed, it is easy to define nondifferentiable functions
R −→ R in constructive mathematics, such as the absolute value. Semantically,
the type Rd of Dedekind reals interpreted in the topos of smooth sets actually
yields the sheaf of continuous (not necessarily smooth) real-valued functions
on the domain spaces.31

Clearly a more interesting smooth set than this is the sheaf of smooth real-
valued functions, which is equivalently the usual smooth manifold R regarded
as a diffeological space. In the internal language of smooth sets, this appears as
a type Rs of “smooth reals” living strictly in between the “discrete (Cauchy)
reals” Rc and the “continuous (Dedekind) reals” Rd . It seems unlikely that
there is any type definable in type theory whose interpretation in smooth sets is
Rs , but we can at least write down some axioms that Rs satisfies, such as being
a subring of Rd , or more generally closed under the action of all “standard
smooth functions” (see [45] for one way to make this precise).

A more transformative approach is to make the notion of “smoothness”
synthetic as well, rather than relying on the classical limit definition of
derivative. Following Grothendieck’s insight into the importance of nilpotent
elements in algebraic geometry, we can enhance the category T = {Rn}n∈N by
replacing each Rn by its algebra of smooth functions C∞(Rn) and turning the
arrows around to obtain a category of R-algebras, then adding new algebras
that are “deformations” of some C∞(Rn) containing nilpotents. Whatever the
details, the resulting topos will contain an internal ring R that enhances Rs to
include nilpotent “infinitesimals,” with Rs the quotient by these:

R
����

Rc
�� Rs

�� Rd

Nilpotents allow a synthetic definition of differentiation: if D ⊆ R is defined
by D = {d : R | d2 = 0}, then for any f : D −→ R there is a unique f ′(0) : R
such that f (d) = f (0) + f ′(0) · d for all d : D. (This is sometimes called the
Kock–Lawvere axiom.) In particular, all functions f : R −→ R are differentiable
in this synthetic sense. The theory resulting from this and similar axioms that
hold in the above sheaf toposes is called synthetic differential geometry; for
further reading, see [19, 66, 70, 89] and Chapter 2.

31 In particular, while it is true in a sense that “everything is smooth” in this topos, what this
actually means is that each object comes with a “notion of smoothness,” that could in some
cases happen to coincide with mere continuity.
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This section has been a very brief sketch of some ways to access the spatial
structure of types internally. Rather than pursue any of these avenues in detail,
I want to describe (in Section 5) a newer approach to synthetic topology that
leverages more of the categorical and type-theoretic structure, involving higher
modal operators. However, first we must move sideways to consider another
very different latent structure in type theory: that of homotopy spaces or
∞-groupoids.

4 Homotopy Type Theory

4.1 The Mystery of Identity Types

For many years, the most mysterious part of Martin-Löf’s type theory was the
identity types “x = y.” As mentioned in Sections 2.4 and 3.1, the semantic idea
is that the dependent type x : A,y : A � (x = y) type represents the diagonal
,A : �A� −→ �A� × �A�, regarded as an object of Ctx/(�A�×�A�). Of course,
,A is automatically present in the classifying category, as defined in Section
2.4; but without the identity type it is not represented by any dependent type.

The rules of the identity type are difficult to understand at first, but
essentially they use a universal property to express the fact that it is the
diagonal. In fact, any object f : B −→ A of a slice category C /A has a universal
property: it is the image of the terminal object 1B : B −→ B of C /B under the
left adjoint f! : C /B −→ C /A to pullback along f . In other words, for any
object g : C −→ A of C /A, morphisms f −→ g in C /A are in natural bijection
with sections of the pullback f ∗(g) : f ∗C −→ B:

f ∗C

��

��

�

C

g

��
B

f ��

��

A

⇐⇒
B

f ���
��

��
�

�� C

g
����
��
��

A

Thus, ,A : A −→ A × A is characterized in C /(A × A) by saying that for
g : C −→ A × A, morphisms ,A −→ g are naturally bijective to sections of
,∗

A(g):

,∗
AC

��

��

�

C

g

��
A

,A ��

��

A × A

⇐⇒
A

,A ���
��

��
��

�� C

g����
��
��
�

A × A
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If we represent g by a dependent type x : A,y : A � C type, then the pullback
on the left corresponds to substitution of the same variable for both x and y, for
example, C[w/x,w/y] in context w : A. The section on the left is then a term
w : A � c : C[w/x,w/y], whereas the induced map on the right corresponds
to a term x : A,y : A,p : x = y � d : C. If we represent the latter in Yoneda
form, as we did for (2.11), we obtain the following rule:

�,x : A,y : A � C type �,w : A � c : C[w/x,w/y]
� � a : A � � b : A � � p : a = b

� � J(C,c,p) : C[a/x,b/y]
(4.1)

The corresponding introduction rule is just the unit of this adjunction, saying
that the diagonal of A has a specified section when pulled back along itself.
Logically, it expresses the reflexivity of equality:

� � A type � � a : A

� � refla : a = a

In the classifying category, this rule is a section as on the left below:

,∗
AIdA

��

��

�

IdA

��
�A�

,A ��

��

�A� × �A�

⇐⇒
�A�

,A ���
��

��
��

�
refl �� IdA

����
��
��
��

�A� × �A�

where Id denotes �x : A,y : A,p : x = y�. Thus, refl gives a morphism as
on the right above; the universal property should make this an isomorphism
�A� ∼= IdA.

This adjoint characterization of equality is due to Lawvere [71], but it is
closely related to Leibniz’s “indiscernibility of identicals.” Specifically, given
a property x : A � P(x) : �, we can form x : A,y : A � (P (x) −→ P(y)) : �.
Taking this as C, we have the second hypothesis of (4.1) given by w : A �
(λp.p) : P(w) −→ P(w). Thus, from (4.1) we get

x : A,y : A,p : x = y � J(· · · ) : P(x) −→ P(y).

This says that if x and y are equal (“identical”) then any property that holds of
x also holds of y (“indiscernible”). The function P(x) −→ P(y) induced by p

is often denoted p∗ and called substitution or transport.
In dependent type theory, we need to enhance (4.1) to allow C to depend

on a “witness of equality” p : x = y as well, and also add a computation rule
relating it to the introduction rule refla . This yields the rules shown in Figure
6.5, which are due to Martin-Löf [84, 85]. Just as for coproducts, we expect this
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� � A type � � a : A � � b : A

� � (a = b) type

� � A type � � a : A

� � refla : a = a

�,x : A,y : A,e : x = y � C type
�,w : A � c : C[w/x,w/y,reflw/e] � � a : A � � b : A � � p : a = b

� � J(C,c,p) : C[a/x,b/y,p/e]

�,x : A,y : A,e : x = y � C type
�,x : A � c : C[x/y,reflx/e] � � a : A

� � J(C,c,refla) ≡ c[a/x]

Figure 6.5 The rules for identity types.

enhancement to ensure the full universal property of the desired adjunction.
When phrased informally in terms of points, the stronger elimination rule says
that if we want to perform a construction or proof involving a general element
p : x = y (for general x and y), it suffices to consider the case when y is
x and p is reflx . This is formally analogous to the elimination rule for (say)
coproducts, which says that to perform a construction or proof involving a
general element z : A + B, it suffices to consider the two cases when z is inl(x)

and inl(y).
It may seem odd to introduce a new notation and system of rules for an

object (the identity type) that turns out to be isomorphic to something we
already had (the diagonal map). The point is that dependent type theory has
two different ways of representing a morphism A −→ B, depending on whether
we view it as simply a morphism between two objects or as an object of the
slice category over its codomain B. The same is true in set theory: we can have
a function f : A −→ B between sets, or we can have a B-indexed family of
sets {Ab}b∈B , and up to isomorphism the two are equivalent by A = ∐

b Ab

and Ab = {a ∈ A | f (a) = b}. As mentioned in Section 2.4, enabling us to
think in terms of “indexed families” in an arbitrary category is actually one of
the strengths of dependent type theory, and the identity type and �-type are
exactly what supply the isomorphism between functions and families in type
theory.

However, although the rules in Figure 6.5 are well motivated categorically
from a universal property, they appear to have a serious problem. Specifically,
if the identity type satisfies these rules only, and we define the classifying
category as in Section 2.4, then it does not have pullbacks!

Consider, for instance, how we might try to pull back a dependent type
�y : B,z : C(y)� −→ �B� along a morphism �f � : �A� −→ �B�. In Section 2.4
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we claimed that such a pullback should be obtained by substituting f (x) for
y in C(y). To check the universal property, we would consider a diagram as
below:

�T �

g

��

h

��

?

��
�x : A,z : C(f (x))� ��

��

�

�y : B,z : C(y)�

��
�A�

�f �
�� �B�.

Then g is a term t : T � g(t) : A, while h is determined by two terms
t : T � h1(x) : B and t : T � h2(t) : C(h1(x)). Now it seems as though
the commutativity of the square would force h1(t) to be f (g(t)), so that
h2 would be a term t : T � h2(t) : C[f (g(t))/y], or equivalently t : T �
h2(t) : C[f (x)/y][g(t)/x], inducing the dotted morphism.

This appealing argument stumbles on the fact that we quotiented the
morphisms in Ctx by an equivalence relation induced by the identity type.
Thus, to say that the above square commutes does not mean that h1(t) is
literally f (g(t)), only that we have a term t : T � p : h1(t) = f (g(t)).
This is not by itself the end of the world, because p induces a transport
function p∗ : C(h1(t)) −→ C(f (g(t))), so we can define the dotted morphism
as t : T � p∗(h2(t)) : C(f (g(t))). The real problem is that this morphism
depends on the choice of the term p, but the term p is not specified by the
mere fact that the outer square commutes; thus the dotted factorization is not
unique.

I have stated this problem in a form that may make its solution seem
obvious to a modern reader with a certain background. However, for many
years after Martin-Löf, no one with this background looked at the problem;
nor was it stated in this way. Instead, the question was whether we can prove
inside type theory that the identity type x : B,y : B � (x = y) type is a
“proposition” in the sense of Sections 2.6 and 3.1, that is, any two of its
elements are equal. Categorically, this would mean proving that the projection
�x : B,y : B,p : x = y� −→ �x : B,y : B� is a monomorphism (as we expect, if
it is to be the diagonal); while syntactically it would mean constructing, given
p : x = y and q : x = y, a term of p = q. If this were the case, different
choices of p would result in terms p∗(h2(t)) that are equal, so that uniqueness
for the pullback would be restored.
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It turns out, however, that we cannot prove that the identity type is always
a proposition. Thus, people (starting with Martin-Löf) considered adding this
statement as an extra stand-alone axiom,

� � p : a = b � � q : a = b

� � e : p = q
, (4.2)

called uniqueness of identity proofs (UIP). Type theory with UIP is sometimes
called extensional,32 while type theory without UIP is called intensional. Thus,
as mentioned in Section 2.5, it is extensional Martin-Löf type theory for which
our previous construction of Ctx(T) presents free locally cartesian closed
categories (or other kinds of structured categories). However, baldly assuming
UIP is unsatisfying, since it does not fit into the system of rule packages
motivated by universal properties, as described in Section 2.5. Moreover, this
approach provides no insight into why UIP might be true, or why it is not
provable.

But to a modern reader with a background in homotopy theory, the above
problem looks familiar: it is the same reason why the homotopy category of
spaces does not have pullbacks. In that case, we consider instead homotopy
pullbacks, where the factorization morphism is required to depend on a choice
of homotopy filling the square. This suggests we should regard Ctx as a
“homotopy theory” or (∞,1)-category, thereby explaining why we cannot
prove that x = y is a proposition: diagonals in an (∞,1)-category are
not in general monic. For instance, in the 2-category of groupoids, the
monomorphisms are the fully faithful functors, but a diagonal G −→ G × G is
not generally full: its functorial action on hom-sets

homG(x,y) −→ homG×G((x,x),(y,y)) = homG(x,y) × homG(x,y)

is not an isomorphism if homG(x,y) has more than one element. The first
model of type theory using this idea was constructed by [52] using groupoids;
later authors [11, 64] generalized it using homotopy theory.

This situation should be compared with the remarks about constructive
logic in Section 3.2. In both cases we have a rule (LEM or UIP) that seems
reasonable given one model or class of models (the category of sets, or
all 1-categories). But this rule turns out not to be provable, because type
theory admits more general models, in some of which the rule is false. This
provides us with the proper attitude towards the rule: assuming it simply means
restricting the class of categories we are interested in, whereas declining to
assume it allows us to use type theory as a syntax for a wider class of models.

32 More precisely, “propositionally extensional”; see Section 4.7.
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Unfortunately, there is much unresolved subtlety in an (∞,1)-categorical
interpretation of type theory. One hopes for an analogue of the 1-categorical
situation, with a “classifying (∞,1)-category” that is free in some
(∞,1)-category of structured (∞,1)-categories, setting up an (∞,1)-
adjunction, but it is quite difficult to make this precise. In Section 4.6 I
will sketch the current state of the art; until then I will just assume that the
problem will be solved somehow, as I believe it will be.

4.2 Types as ∞-Groupoids

In Section 3.4 we saw that if we decline to assume LEM, we can detect the
potential spatial structure of types internally. Similarly, if we decline to assume
UIP, then types have potential “homotopy space” or “∞-groupoid” structure,
and the natural way to try to detect this is by using the identity types. But what
does x = y mean when it is not just a proposition?

In higher category theory, we have a notion of n-groupoid, which is an
∞-groupoid containing no interesting information above dimension n. This
can be defined inductively: a 0-groupoid is an ∞-groupoid that is equivalent
to a discrete set, while an (n + 1)-groupoid is one all of whose hom-
∞-groupoids homA(u,v) are n-groupoids. Moreover, we can extend the
induction downwards two more steps: an ∞-groupoid is a 0-groupoid just
when each homA(u,v) is empty or contractible, so it makes sense to define
a (−1)-groupoid to be an ∞-groupoid that is either empty or contractible.
Similarly, an ∞-groupoid is a (−1)-groupoid just when its homs are all
contractible, so we can define a (−2)-groupoid to be a contractible one. (See,
for instance, [15, Section 2].)

In particular, when we regard a set as an ∞-groupoid, the proposition that
two elements u,v are equal turns into the (−1)-groupoid homA(u,v). Thus,
the homs of an ∞-groupoid generalize the notion of equality for elements of a
set, so it is natural to expect the type u = v to behave like homA(u,v). This is
correct: we can derive all the composition structure on these hom-objects that
should be present in an ∞-groupoid from the rules in Figure 6.5 [78, 113]. For
instance, we can construct the composition law

(x = y) × (y = z) −→ (x = z)

by applying the eliminator to p : x = y to assume that y is x and p is reflx ,
in which case the other given q : y = z has the same type as the goal x = z.
(This is the same as the proof of transitivity of equality in extensional type
theory.)
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Other aspects of homotopy theory can also be defined using the identity
type. For instance, the loop space �(A,a) of a type A at a point a is just the
identity type (a = a). Voevodsky also showed that we can mimic the above
inductive definition of n-groupoids, also called homotopy n-types:33 a type A

is an (n + 1)-type if for all x : A and y : A the type (x = y) is a n-type. We
can start at n = −1 with the propositions as defined in Section 3.1, that is,
types A such that for all x : A and y : A we have x = y. We can also start at
n = −2 with the contractible types, which are just the propositions that have
an element. Note that the homotopy 0-types, also called sets, are those that
satisfy UIP; so UIP could equivalently be phrased as “all types are sets.”

Two types are homotopy equivalent if we have f : A −→ B and g : B −→ A

such that g ◦ f = 1A and f ◦ g = 1B . However, the type of such data∑
f :A−→B

∑
g:B−→A(g ◦ f = 1A) × (f ◦ g = 1B) (4.3)

is not a correct definition of the type of homotopy equivalences. (It is correct if
A and B are sets, in which case we generally say isomorphism or bijection
rather than equivalence.) The problem is that, given f : A −→ B, the rest
of (4.3), ∑

g:B−→A(g ◦ f = 1A) × (f ◦ g = 1B), (4.4)

may not be a proposition, whereas we want “being an equivalence” to be a
mere property of a morphism. For instance, if f is the identity map of the
homotopical circle S1 (see Section 4.5), then (4.4) is equivalent to Z. Thus if
we took (4.3) as our definition of equivalence, there would be “infinitely many
self-equivalences of S1,” which is not correct: up to homotopy, there should be
only two.

Many equivalent ways to correct (4.3) are now known; here are a few:∑
f :A−→B

∑
g:B−→A

∑
h:B−→A(g ◦ f = 1A) × (f ◦ h = 1B), (4.5)∑

f :A−→B

∑
g:B−→A

∑
η:g◦f =1A

∑
ε:f ◦g=1B

f (η) = εf , (4.6)∑
f :A−→B

∥∥∥∑g:B−→A(g ◦ f = 1A) × (f ◦ g = 1B)

∥∥∥, (4.7)∑
f :A−→B

∏
y:B

((∑
x:A f (x) = y

)
is contractible

)
. (4.8)

Each of these admits maps back and forth from (4.3), while the data after the∑
f :A−→B form a proposition. We can think of these as building contractible

cell complexes. For instance, in (4.5), we glue on two 1-cells g,h each with
a contracting 2-cell, giving a contractible space, whereas in (4.3), we glue on

33 Voevodsky’s terminology [117] is “type of h-level n + 2.”
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one 1-cell with two contracting 2-cells, giving a noncontractible 2-sphere. And
in (4.6), we add to (4.3) a 3-cell filler, getting a contractible 3-ball.

When making definitions of this sort, we generally think of types as
∞-groupoids (or homotopy spaces), just as in Section 3.2 we thought of
types as sets. However, since type theory presents an initial structured
(∞,1)-category, these definitions can also be interpreted in any structured
(∞,1)-category, yielding “classifying spaces” for n-types and equivalences.
For example, given � � A type and � � B type, if � � Equiv(A,B) type

denotes the type of equivalences (with any of the corrected definitions above),
then the object �Equiv(A,B)� −→ ��� of the slice category has the universal
property that, for any map f : X −→ ���, lifts of f to �Equiv(A,B)� are
equivalent to homotopy equivalences f ∗�A� 
 f ∗�B� over X. (See [64,
Section 3] or [103, Section 4].) In other words, �Equiv(A,B)� is a “classifying
space for equivalences between �A� and �B�.”

4.3 Extensionality and Univalence

In Section 3.4 we “actualized” the potential spatial structure of types by adding
axioms such as a dominance or a type of smooth reals. Similarly, we can add
axioms ensuring that there really are types with higher groupoid structure –
that is, that not all types are sets, or that UIP fails. The only serious contender
for such an axiom at present is Voevodsky’s univalence axiom.

To explain univalence, let us return to the type constructors discussed
in Sections 2.5 and 2.6. We claimed that the rules for coproduct types,
function types, subobject classifiers, and so on express their desired categorical
universal properties. For most types, this is literally true, but there are a couple
of cases34 in which something is missing from our discussion so far.

First, the universal property of an exponential object requires that any map
X × �A� −→ �B� factor through a unique map X −→ �B��A�. For �A −→ B� to

be �B��A�, therefore, requires that if � � f : A −→ B and � � g : A −→ B and
�,x : A � h : f (x) = g(x), then also � � e : f = g (because elements
of the identity type induce equalities of morphisms in Ctx, or homotopies
in Ctx). This is not derivable from the rules in Figure 6.1; it is an extra

34 What these cases have in common is that they are “mapping in” universal properties. “Mapping
out” universal properties, like for coproducts, can be expressed more powerfully in type theory
using a dependent output such as in (2.12), enabling us to derive their full universal property
from the basic rules. (Of course, the cartesian product also has a “mapping in” universal
property, but it does not have this problem; formally, this is because the classifying category is
better described as a sort of “cartesian multicategory” in which the cartesian product also has a
“mapping out” universal property.)
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axiom called function extensionality. Informally, it says that two functions are
equal if they take equal values. (Dependent function types require a similar
axiom.)

Second, the universal property of a subobject classifier requires that a mono
M −→ ��� is classified by a unique map ��� −→ �, or equivalently, two maps
��� −→ � classifying the same subobject of ��� are equal. Here “the same”
means isomorphism in Ctx/���; a classifying map only determines a mono
up to isomorphism anyway. Type-theoretically, this means that if � � P : �

and � � Q : � and � � h : Equiv(P,Q), then � � e : P = Q. This is not
derivable from the rules in Section 2.6; it is an extra axiom called propositional
extensionality. (Note that two propositions are equivalent as soon as each
implies the other.)

When we try to generalize propositional extensionality for � to a statement
about type universes U , things become more subtle. We still expect classifying
maps to classify only up to isomorphism – or better, up to homotopy equiva-
lence, which leads us towards homotopical classifying spaces. In traditional
homotopy theory (e.g., [86]), homotopy classes of maps into a classifying
space correspond to homotopy equivalence classes of fibrations over it. But
in an (∞,1)-category, it is more natural to ask directly that the ∞-groupoid
hom(X,U ) is equivalent to a full sub-∞-groupoid of the slice category
over X; this gives the notion of an object classifier [80, Section 6.1.6].
Type-theoretically, the corresponding condition is that for � � A : U and
� � B : U , the type � � (A = B) type (i.e., the ∞-groupoid of homotopies
between classifying maps) is equivalent to the type Equiv(A,B) of homotopy
equivalences as in Section 4.2. More precisely, identity-elimination yields a
function idtoeqvA,B : (A = B) −→ Equiv(A,B), and we should require that this
map is itself an equivalence.

This axiom is due to Voevodsky, who dubbed it univalence.35 Univalence
clearly implies propositional extensionality, while Voevodsky showed [117]
that it also implies function extensionality (see, e.g., [112, Section 4.9]).
Univalence also does indeed ensure that not all types are sets (i.e., homotopy
0-types). For instance, if B : U has a nontrivial automorphism, such as
B = 1 + 1, then Equiv(B,B) is not a proposition. Hence, neither is the equality

35 By analogy with function extensionality and propositional extensionality, univalence could
be called typal extensionality. In particular, like function extensionality and propositional
extensionality, univalence is an “extensionality” property, meaning that “types are determined
by their behavior.” For this reason, it is unfortunate that the phrase “extensional type theory”
has come to refer to type theory with UIP, which is incompatible with univalence. Historically,
the special case of univalence when A and B are sets, in which case one can use (4.3)
without “correction,” was proposed by Hofmann and Streicher [52] under the name “universe
extensionality,” but it did not attract much attention.
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type B = B in U , so U is not a set. More generally, with a hierarchy of
universes Un with Un : Un+1, each Un is not an n-type [67].

In particular, for models in the category of sets, or more generally in any
1-category, univalence must be false. For instance, any “Grothendieck uni-
verse” in ZFC set theory can be used as a type-theoretic universe U in Set;
but it is not univalent, since it would be a set (a 0-type), whereas the above
argument shows no univalent universe containing a 2-element set can be a set.

Formally, univalence is an axiom like UIP and LEM that cuts down our
collection of models, only now in a way that excludes all 1-categories. Just
as the topological axioms from Section 3.4 are incompatible with LEM,
univalence is incompatible with UIP. These two oppositions are essentially
independent: the topos of sets satisfies both LEM and UIP, the toposes of
consequential spaces and continuous sets satisfy UIP together with topological
axioms instead of LEM, and the (∞,1)-category of ∞-groupoids satisfies
univalence instead of UIP but still satisfies LEM. (In particular, LEM does
not rule out all “spatial” interpretations of type theory, at least if we regard
∞-groupoids as a kind of “space.”) Finally, in Section 5, we will mention
some (∞,1)-categories that combine topological axioms with univalence, thus
satisfying neither LEM nor UIP.36

To a homotopy theorist or higher category theorist, assuming univalence
instead of UIP is obviously the right move; but it can be a difficult step for those
used to thinking of types as sets. However, univalence can also be motivated
from purely type-theoretic considerations, as giving a “correct” answer to
the question “what are the identity types of a universe?” just as function
extensionality answers “what are the identity types of a function type?” And
from a philosophical point of view, univalence says that all properties of types
are invariant under equivalence, since we can make any equivalence into an
equality and apply transport; thus it expresses a strong “structural” nature of
type theory [8, 35], in contrast to ZFC-style set theory.

For the homotopy theorist, univalence is one place where we start to see the
advantage of the type-theoretic syntax. Inside type theory, the “elements” of a
universe type U are themselves types, in contrast to the classical construction
of classifying spaces whose “points” often lack a meaning directly connected
to the things being classified. This enables us to define other classifying spaces
and operations between them in a very intuitive way. For instance, if G is

36 Most “classicality” properties like the axiom of choice behave similarly to LEM in this way,
but some very strong choice principles do conflict with univalence, such as the existence of a
global “Hilbert choice” operator (see [112, Section 3.2 and Exercise 3.11]).
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a group (meaning a set, a 0-type, with a group structure), we can define its
classifying space to be “the type of free transitive G-sets”:

BG =∑A:U
∑

a:G×A−→A(A is a set and a is a free transitive action).

That is, an element of BG is a tuple (A,a, . . . ) consisting of a type, an action
of G on that type, and witnesses of the truth of the necessary axioms. It turns
out that BG is a connected 1-type with �(BG) = G. If G is abelian, we can
define an operation BG×BG −→ BG by taking the “tensor product” of G-sets,
and so on.

This definition of BG also immediately defines the objects it classifies:
a “torsor” over a type X is just a function X −→ BG. The first component
of such a function is a map X −→ U , corresponding to a dependent type
x : X � A type, and hence a map �A� −→ �X�. The rest of the classifying
map equips this with the usual structure of a torsor over X.

In fact, any definition of a structure in type theory automatically defines
the classifying space for such structures and therefore also automatically the
corresponding notion of “bundle of structures.” For instance, a group can be
considered a tuple (G,e,m, . . . ) of a set, an identity, a multiplication, and
proofs of the axioms, giving a definition of “the type of groups”:

Group =∑G:U
∑

e:G
∑

m:G×G−→G(G is a set and (m,e) is a group structure).

We then automatically obtain a notion of a “family of groups,” namely, a
function X −→ Group. This turns out to correspond precisely to a local system
of groups in the sense of classical homotopy theory. Similarly, we can define a
spectrum to be a sequence of pointed types (Xn,xn) each of which is the loop
space of the next; thus the “type of spectra” is

Spectrum =∑X:N−→U

∑
x:

∏
n:N Xn

∏
n:N

(
(Xn,xn) = �(Xn+1,xn+1)

)
.

This yields automatically a notion of “parameterized spectrum,” namely, a
function X −→ Spectra. The homotopy groups of a spectrum are functions
πn : Spectrum −→ AbGroup, while the Eilenberg–Mac Lane construction is a
function H : AbGroup −→ Spectrum; these then act by simple composition to
relate parameterized spectra and local systems. Thus, type theory automat-
ically handles generalizations to “parameterized spaces,” which in classical
homotopy theory and category theory have to be done by hand.

4.4 Higher Inductive Types

In Section 2.5 we mentioned type constructors corresponding to coproducts,
products, exponentials, initial and terminal objects, diagonals, and natural
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� � f : A −→ B � � g : A −→ B

� � coeq(f ,g) type

� � N : B

� � 〈N〉 : coeq(f ,g)

� � M : A

� � ceq(M) : 〈f (M)〉 = 〈g(M)〉

�,z : coeq(f ,g) � C type �,y : B � cB : C[〈y〉/z]
�,x : A � cA : ceq(x)∗(cB [f (x)/y]) = cB [g(x)/y] � � P : coeq(f ,g)

� � cind(C,cB,cA,P ) : C[P/z]

...

� � cind(C,cB,cA,〈N〉) = cB [N/y]

...

� � apcind(C,cB,cA)(ceq(M)) = cA[M/x]

Figure 6.6 The rules for coequalizer types.

numbers objects. Combining dependent sum types with the identity type yields
all finite limits; for instance, the pullback of f : A −→ C and g : B −→ C is∑

x:A
∑

y:B(f (x) = g(y)).

Moreover, with the natural numbers type we can express certain infinite limits,

for example, the limit of a sequence · · · p2−→ A2
p1−→ A1

p0−→ A0 is∑
f :

∏
n:N An

∏
n:N pn(f (n + 1)) = f (n).

However, to represent colimits other than coproducts we need new type
constructors. For instance, the rules for the coequalizer type coeq(f ,g) are
shown in Figure 6.6. The first is formation: any f,g : A −→ B have a
coequalizer. The next two are introduction: there is a map B −→ coeq(f ,g),
and the two composites A ⇒ B −→ coeq(f ,g) are equal. The third is
the elimination rule, which is analogous to the case analysis rule (2.12). To
understand this, consider first the simpler version analogous to (2.11), where
C does not depend on coeq(f ,g):

� � C type �,y : B � cB : C

�,x : A � cA : cB [f (x)/y] = cB [g(x)/y] � � P : coeq(f ,g)

� � cind(C,cB,cA,P ) : C
.
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This expresses the existence part of the universal property of a coequalizer:
given a map B −→ C such that the composites A ⇒ B −→ C are equal, there is
an induced map coeq(f ,g) −→ C.

As with coproducts, the more general version in Figure 6.6 also implies
the uniqueness part of the universal property. It contains one new aspect: if C

depends on coeq(f ,g), then cB [f (x)/y] and cB [g(x)/y] have different types
C[f (x)/y] and C[g(x)/y], so we cannot write “cB [f (x)/y] = cB [g(x)/y].”
But we have ceq(x) : f (x) = g(x), so the types C[f (x)/y] and C[g(x)/y]
ought to be “the same”; but formally we need to “transport” cB [f (x)/y] along
ceq(x) (using identity-elimination) to get an element of C[g(x)/y] that we
can compare to cB [g(x)/y]. This is what the notation ceq(x)∗(cB [f (x)/y])
means.

Finally, the last two rules (in which I have omitted the premises for brevity)
are the computation rules. The first says that when a map coeq(f ,g) −→ C

is induced by the universal property, the composite B −→ coeq(f ,g) −→ C

is indeed the original map B −→ C. The second says similarly that the
“induced equality” between the composites A ⇒ B −→ coeq(f ,g) −→ C is
the originally given one. (Do not worry about the notation; it is not important
for us.)

If this “equality of equalities” sounds weird, recall that in homotopy type
theory, the type x = y represents the hom-∞-groupoid and hence can have
many different elements. Thus, it makes sense to ask whether two such
“equalities” are equal. In fact, when we regard type theory as presenting an
(∞,1)-category rather than a 1-category, the type coeq(f ,g) represents an
∞-categorical coequalizer, aka, a homotopy coequalizer. From this we can
build all finite (homotopy) colimits, as in [80, Corollary 4.4.2.4]. We also
obtain certain infinite colimits: for example, the coproduct of a countably infi-

nite family A : N −→ U is just
∑

n:N An, and the colimit of a sequence A0
f0−→

A1
f1−→ A2

f2−→ · · · is the coequalizer of two maps (
∑

n:N An) ⇒ (
∑

n:N An).
The rules for coeq(f ,g) do not require any ∞-categorical behavior, and

are perfectly consistent with UIP. In particular, adding them to extensional
MLTT yields a type theory for locally cartesian closed categories with finite
colimits. Nevertheless, types such as coeq(f ,g) were not widely studied
prior to the advent of homotopy type theory; they are known as higher
inductive types.

In general, an inductive type W is specified by a list of constructors,
which are (possibly dependent) functions into W . For instance, the coproduct
A + B is the inductive type specified by two constructors inl : A −→ A + B

and inr : B −→ A + B. (The empty type ∅ is inductively specified by no
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constructors.) The constructors are the introduction rules of the resulting type,
while the elimination rule says that to define a map out of the inductive type it
is sufficient to specify its behavior on the constructors.

A higher inductive type (HIT) is similar, but the constructors can also be
functions into equality types of the HIT. For instance, coeq(f ,g) is specified
by two constructors 〈–〉 : B −→ coeq(f ,g) and ceq :

∏
x:A(〈f (x)〉 = 〈g(x)〉).

The word “inductive” comes from the fact that in general, the type being
defined is allowed to appear in the domains of its constructors in certain
limited ways. For instance, the natural numbers are the inductive type specified
by two constructors 0 : N (a 0-ary function) and succ : N −→ N. Informally,
this means that the elements of N are generated by applying the constructors
successively any number of times; thus we have 0, succ(0), succ(succ(0)), and
so on.

When combined with higher constructors, this additional feature is quite
powerful; for instance, the propositional truncation ‖A‖ from Figure 6.4 is the
HIT specified by two constructors |– | : A −→ ‖A‖ and tprp :

∏
x,y:‖A‖(x = y).

We can similarly construct an n-truncation that is the universal map
A −→‖A‖n into a homotopy n-type (i.e., its nth Postnikov section). In
particular, the 0-truncation ‖A‖0 is the “set of connected components.”

“Recursive” HITs of this sort can also be used to construct more exotic
objects, such as homotopical localizations. Given a map f : S −→ T , we say
that a type A is f -local if the map (– ◦ f ) : (T −→ A) −→ (S −→ A) is an
equivalence. The f -localization is the universal map from a type X into an
f -local type Lf X. In classical homotopy theory, constructing localizations in
general requires a fairly elaborate transfinite composition. But in homotopy
type theory, we can simply define Lf X to be the HIT generated by the
following constructors:

• A map η : X −→ Lf X.
• For each g : S −→ Lf X and t : T , an element ext(g,t) : Lf X.
• For each g : S −→ Lf X and s : S, an equality ext(g,f (s)) = g(s).
• For each g : S −→ Lf X and t : T , an element ext′(g,t) : Lf X.
• For each h : T −→ Lf X and t : T , an equality ext′(h ◦ f,t) = h(t).

The last four constructors combine to lift (– ◦ f ) to an element of (4.5).
(This is why we have both ext and ext′; if we collapsed them into one we
would only get (4.3).) This is one example of how homotopy type theory
gives a “direct” way of working with objects and constructions that in
classical homotopy theory must be laboriously built up out of sets. For more
examples and theory of higher inductive types and their applications, see [112,
Chapter 6].
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4.5 Synthetic Homotopy Theory

With HITs we can define many familiar spaces from classical homotopy theory.
For instance, in the ∞-category of ∞-groupoids, the circle S1 is the homotopy
coequalizer of 1 ⇒ 1; thus we expect the corresponding coequalizer type to
behave like an “internal S1” in homotopy type theory. It is equivalently the HIT
generated by two constructors base : S1 and loop : base = base; its elimination
rule (universal property) says roughly that to give a map S1 −→ C is equivalent
to giving a point c : C and a loop l : c = c.

Since HITs are consistent with UIP, this “circle” may not behave as
expected: in a 1-category, the coequalizer of 1 ⇒ 1 is just 1. But if we also
assume univalence, type theory becomes a powerful tool for working directly
with ∞-groupoids such as S1. By the universal property of S1, to give a
dependent type C : S1 −→ U , we must give a type B : U and an equality
B = B; but by univalence, the latter is the same as an autoequivalence of B.
For instance, if B is Z, we can use the autoequivalence “+1”; the resulting
dependent type is then a version of the universal cover of S1. With a little
extra work [77], we can adapt the classical calculation of π1(S1) to show, in
type theory, that �S1 
 Z.

This is the first theorem of a growing field known as synthetic homotopy
theory, more of which can be found in [112, Chapter 8] and recent work
such as [24, 44, 76]. Just as in the synthetic topology of Section 3.4, the
types come automatically with topological structure, which we can then
study “synthetically” rather than breaking it down into a set equipped with
a topology, in synthetic homotopy theory the types come automatically with
homotopical or ∞-groupoid structure, which we can then study synthetically
rather than breaking it down into any explicit definition of an ∞-groupoid.
Thus it is a “model-independent” language for homotopy theory, avoiding the
need to choose (say) topological spaces or simplicial sets as a definition of
“∞-groupoid.”

It is too early to say how useful this will be to classical homotopy theory.
In its very short existence so far, synthetic homotopy theory has not led to
proofs of any new theorems, but it has shown an impressive ability to produce
new proofs of old theorems: as of this writing, synthetic homotopy theorists
have calculated πn(Sn) = Z, πk(Sn) = 0 for k < n, π3(S2) = Z, and
π4(S3) = Z/2Z, and proven numerous foundational results, such as the
Freudenthal suspension theorem, the Blakers–Massey connectivity theorem,
and the Serre spectral sequence.

More importantly, the theorems of synthetic homotopy theory are more
general than those of classical homotopy theory, because (modulo sub-
tleties to be mentioned in Section 4.6) they apply in any well-behaved
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(∞,1)-category, including any ∞-topos [80, 92]. (Some ∞-toposes of inter-
est to classical homotopy theorists include equivariant and parameterized
homotopy theory.) A particularly interesting example is the Blakers–Massey
theorem, for which no purely homotopical proof applicable to ∞-toposes was
known prior to the synthetic one [44]; the latter has now been translated back
into categorical language [94].

Finally, synthetic homotopy theory gives a new way to think about the
“homotopy hypothesis” of Grothendieck [13] that ∞-groupoids describe the
homotopy theory of spaces. Rather than looking for an equivalence between
some notions of ∞-groupoid and space, we have a synthetic theory of
∞-groupoids that is modeled by classical homotopy spaces – but also other
things. (In fact, Brunerie has observed that the ∞-groupoid structure of
types in homotopy type theory looks almost exactly as it was envisioned by
Grothendieck [83], rather than like any of the definitions of ∞-groupoid used
more commonly today.) In Section 5 I will sketch a particular context in which
this extra generality is useful.

4.6 The Classifying (∞,1)-Category

In this appendix to Section 4 I will describe the “classifying (∞,1)-category”
informally, then give a precise definition of it, and end with some remarks
about the current state of knowledge as regards its freeness. This appendix
and Section 4.7 are provided to satisfy the curious reader, but can be skipped
without consequence.

Let T be an intensional type theory. We define the objects and morphisms
of its classifying (∞,1)-category Ctx(T) just as we did for the classifying
1-category Ctx(T) in Section 2.4. However, we do not quotient the morphisms
by terms in the equality type. Instead we will use those to define the
2-morphisms, as well as 3-morphisms, 4-morphisms, and so on.

The idea is to generalize the representation of equalities using diagonals
to a characterization of 2-morphisms. Given morphisms f,g : A −→ B in an
(∞,1)-category, their “equalizer” is a morphism e : E −→ A equipped with a
2-morphism f e ∼= ge that is “universal” among such 2-morphisms. In particu-
lar, to give a 2-morphism f ∼= g is equivalent to giving a section of e (that is, a
morphism s : A −→ E and a 2-morphism es ∼= 1A). As in the 1-categorical
case, this equalizer can be constructed, up to equivalence, as the pullback
of the diagonal B −→ B × B along (f ,g) : A −→ B × B. Thus, assuming
that the identity type of B still presents the diagonal (up to the appropriate
sort of (∞,1)-categorical equivalence), and substitution still presents pullback,
2-morphisms f ∼= g should be equivalent to terms of the form
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x : A � p(x) : f (x) =B g(x). (4.9)

Hence we simply define a 2-morphism in Ctx(T) to be a term of this sort.
Similarly, we define a 3-morphism p ∼= q to be a term in an iterated identity
type x : A � h(x) : p(x) =(f (x)=Bg(x)) q(x), and so on.

To make this precise, we need to choose a method of presenting (∞,1)-
categories. In principle, there are many options; but at present, the method
of choice for defining Ctx(T) is to use fibration categories [23]. A fibration
category (or “category of fibrant objects”) is a 1-category with two classes of
morphisms called weak equivalences and fibrations, satisfying certain axioms,
for example, pullbacks of fibrations exist and preserve weak equivalences. The
most important axiom is that every diagonal A −→ A × A factors as a weak
equivalence followed by a fibration, with the intermediate object called a path
object PA for A.

Of course, this is an abstraction of a common situation from homotopy
theory: fibrations of topological spaces, Kan simplicial sets, or chain com-
plexes (and more generally the fibrations between fibrant objects in any Quillen
model category) all have these properties. Generalizing these examples, in any
fibration category, we define a homotopy between f,g : A ⇒ B to be a lift
of (f ,g) : A −→ B × B to a map A −→ PB. We can similarly define higher
homotopies and thereby construct a more explicit notion of (∞,1)-category
(such as a quasi-category), although the combinatorics are somewhat involved;
see [109].

Now, if in the definition of Ctx(T) from Section 2.4 we omit the quo-
tient of morphisms,37 we obtain a fibration category Ctx(T). Its fibrations
are the composites of projections ��,x : A� −→ ���, its weak equivalences are
the homotopy equivalences defined in Section 4.2, and its path objects are the
identity types P �A� = �x : A,y : A,p : x = y�. (The fact that identity types
satisfy the axioms of path objects was one of the central insights of Awodey and
Warren [11, 121].) With this definition, homotopies in the fibration-category
sense correspond bijectively to terms of the form (4.9) – the former are lifts as
on the left below, whereas the latter are sections as on the right:

IdB

��
�A�

(f ,g)
��

  

�B� × �B�

�x : A,p : f (x) = g(x)�

��

��

�

IdB

��
�A�

(f ,g)
��

!!

�B� × �B�

37 Technically, we replace it with a different quotient; see Section 4.7.
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Thus, we may define Ctx(T) to be the (∞,1)-category presented by Ctx(T).
Here we see the second advantage of syntax mentioned in Section 2.1: giving a
presentation of a free object (here, an (∞,1)-category) that is actually stricter
(here, a fibration category) than one would expect from only its universal
property.

However, although this Ctx(T) has some of the expected structure [63, 65],
no one has yet proven its (∞,1)-categorical freeness. Instead, to interpret type
theory in (∞,1)-categories, we use the fact that Ctx(T) is free in a category of
structured fibration categories. The latter have various names like “contextual
categories” [27], “comprehension categories” [55], “categories with fami-
lies” [39], “categories with attributes” [27], “display map categories” [110,
Section 8.3], “type-theoretic fibration categories” [104], “tribes” [62],
“C-systems” [118], and so on. Although this approach has proven more
tractable, it is still quite difficult, for two reasons. One is that, as mentioned
for the 1-categorical case in Section 2.5, complete proofs of the freeness of
Ctx(T) have been given only for a few particular type theories [108]. Everyone
expects these proofs to generalize to all other type theories, but actually writing
down such a generalization, and in a useful amount of generality, is a current
research problem.

Another difficulty is that this approach incurs a new proof obligation. In
principle, a type theory T should be interpreted in an (∞,1)-category C by
means of the unique functor Ctx(T) −→ C determined by the universal property
of Ctx(T). If we stick with the 1-categorical universal property of Ctx(T), then
to interpret T in C we need to also present C by a fibration category of the
appropriate sort. This is a sort of “coherence theorem” for structured (∞,1)-
categories – which, again, is known in some particular cases, but a fully general
version of which is a current research problem; the state of the art includes [5,
46, 63, 64, 79, 102–104, 107, 114]. (Part of this coherence theorem is showing
that pullbacks of fibrations can be made strictly functorial and preserve all
the type operations strictly, which is nontrivial even for 1-categories [31, 36,
50, 51].)

I have chosen not to dwell on these issues because I have faith that they
will eventually be resolved. Instead, I want to focus on the picture that such
a resolution will make possible (and which is substantially achievable even
with current technology). Thus one might call this chapter a “program” for
homotopy type theory and its higher-categorical semantics. In Section 4.7 I
will briefly discuss another technical detail; in Section 5 we will return to the
program.
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4.7 Judgmental Equality

In Section 2.1 we described both the “tautological” and the “reduced-words”
presentation of a free group using “rules” in the style of type theory. For
the reduced-words description, this is the end of the definition; but for the
tautological description, we need to describe the equivalence relation to
quotient by. This can also be defined inductively by the rules shown in Figure
6.7, which essentially say that it is the smallest equivalence relation imposing
the group axioms and compatible with the operations. We also remarked
that there is an algorithm for “reducing” any word from the tautological
presentation, so that two terms are related by ≡ precisely when they reduce
to the same result. Finally, in Section 3.3, we mentioned that type theory
includes an analogous “reduction algorithm” making it into a general-purpose
programming language.

Taken together, these remarks suggest that there should be two forms of
type theory, one involving an equivalence relation ≡ and one not, with a
“reduction algorithm” mapping the first to the second. This is more or less
correct, but it turns out to be quite fiddly to describe the second type theory
without reference to the first. It is sometimes possible [49], but more common
is to describe only a type theory involving ≡, with the reduction algorithm an
endofunction of its terms, and then define the “canonical forms” to be those that
are “fully reduced.” This is also more flexible, since we can add new ≡ axioms
without knowing whether there is a corresponding reduction algorithm that
terminates at a canonical form (or even knowing that there is not!). The relation
≡ is known as judgmental equality or definitional equality or substitutional
equality.38

X elt

X ≡ X

X ≡ Y

Y ≡ X

X ≡ Y Y ≡ Z

X ≡ Z

X ≡ X′ Y ≡ Y ′

(XY) ≡ (X′Y ′)

X ≡ Y

X−1 ≡ Y−1

X elt Y elt Z elt

(X(YZ)) ≡ ((XY)Z)

X elt

(Xe) ≡ X

X elt

(eX) ≡ X

X elt

(XX−1) ≡ e

X elt

(X−1X) ≡ e

Figure 6.7 Equality rules for free groups.

38 Technically, these three terms have slightly different meanings, but in the most common type
theories, they all turn out to refer to the same thing.
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Just as for free groups, when defining the corresponding free object, we
have to quotient by the relation ≡. For the classifying 1-category Ctx(T), this
quotient is included in the quotient by terms of the identity type. But for the
fibration category Ctx(T), where we omitted the latter quotient, we do still
have to impose a quotient by judgmental equality – or, if our type theory has a
terminating reduction algorithm (the technical term is “strongly normalizing”),
use only the canonical forms to represent objects and morphisms.

The puzzling thing, of course, is how this equality ≡ is related to the
equality type x : A,y : A � (x = y) type. Formally, the difference between
these “two equalities” is analogous to the difference between the variables
x : A occurring in a context and the “metavariables” such as � that we
use in describing the operations of the theory. Any inductive definition uses
“metavariables” and can have an inductively defined equivalence relation;
type theory is special because internal to the theory there are also notions of
“variable” and “equality.” The identity type is defined by a universal property,
just like most other types; whereas judgmental equality, like the equivalence
relation on words in a free group, is inductively defined as the smallest
equivalence relation imposing the desired axioms (the computation rules from
Section 2.5, which we denoted with ≡ for this very reason) and respected by
all the other judgments. The latter condition means we have additional rules,
such as

� � a : A

� � a ≡ a
,

� � a ≡ b

� � b ≡ a
,

� � a ≡ b � � b ≡ c

� � a ≡ c
,

� � a : A � � A ≡ B

� � a : B
. (4.10)

This formal description, however, does not really explain why we need two
equalities, or what they mean intuitively. To start with, it cannot be emphasized
strongly enough that it is the identity type that represents mathematical
equality. Equality in mathematics is a proposition, and in particular something
that can be hypothesized and proven or disproven. Judgmental equality cannot
be hypothesized (added to a context), nor can it be proven (inhabited by a
term) or disproven (we cannot even state internally a “negation” of judgmental
equality). In its simplest form, judgmental equality is simply the algorithmic
process of expanding definitions (hence the name “definitional equality”):
for instance, the function λx.x2 is by definition the function that squares its
argument, so (λx.x2)(y + 1) is by definition equal to (y + 1)2. But even
the simplest equalities with mathematical content, such as the theorem that
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x + y = y + x for x,y : N, are not a mere matter of expanding definitions but
require proof.

What, then, can we do with judgmental equality? The main property it has
that the identity type does not is (4.10): given a : A and A ≡ B, the same
term a is also an element of B (hence the name “substitutional equality”). In
particular, if a ≡ b, then (a = a) ≡ (a = b), so that refla : a = b; thus
judgmental equality implies mathematical equality. By contrast, given a : A

and a mathematical equality e : A = B, it is possible to obtain a term of B,
but that term is not syntactically equal to a; instead it is e∗(a), involving the
transport operation.

This need for explicit transports is somewhat annoying, so it is tempting to
eliminate it by collapsing the two equalities with a reflection rule

� � p : a = b

� � a ≡ b
.

Unfortunately, this makes it impossible to detect ≡ using a reduction algo-
rithm, since questions of mathematical equality cannot be decided algorithmi-
cally. This does not necessarily make such a type theory impractical,39 but the
reflection rule also turns out to imply UIP, which is a deal-breaker if we want to
talk about (∞,1)-categories. The (∞,1)-categorical point of view also makes
clear why we need to notate e in e∗(a): since the type A = B is (by univalence)
the type of equivalences from A to B, it could have many different elements,
so that e∗(a) really does depend on the choice of e.

One might then be tempted to go to the other extreme and try to eliminate
judgmental equality entirely. We could in principle express all the computation
rules from Section 2.5 using elements of identity types rather than judgmental
equalities. However, the resulting proliferation of transport operations would
be so extreme as to render the theory essentially unusable. We need a
happy medium, with a judgmental equality as strong as feasible but no
stronger.

The intuitive meaning of judgmental equality is not entirely clear, although
in some ways it is analogous to Frege’s “equality of sense” (with mathe-
matical equality analogous to “equality of reference”). Categorically, judg-
mental equality is analogous to the “point-set-level” or “strict” equality
occurring in strict or semistrict models for higher categories, such as Quillen
model categories or Gray categories. This finds a formal expression in

39 Indeed, not infrequently, the name “extensional type theory” refers to type theory that includes
the reflection rule, rather than assuming UIP as an axiom. Voevodsky and others have also
proposed modified reflection rules that are compatible with (∞,1)-categories.
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the fibration-category approach to semantics, where we need a “semistric-
tification” theorem presenting any (∞,1)-category by a fibration category
satisfying all the judgmental equalities of our type theory strictly. Finding
the right balance of strictness and weakness here is an active frontier of
research.

5 Cohesive Homotopy Type Theory

5.1 Spaces versus ∞-Groupoids

Twice now we have encountered something called a “circle”: in Section 3.4
we mentioned that S1 = {

(x,y) : R × R | x2 + y2 = 1
}

has the correct
topology, and in Section 4.5 we mentioned that S1 = coeq(1 ⇒ 1) has
the correct fundamental group. However, these two types S1 and S1 are very
different! The first S1 is a set in the sense of Section 4.2, whereas S1 is
definitely not, since its loop space is Z. On the other hand, S1 is connected,
in the sense that its 0-truncation

∥∥S1
∥∥

0 is contractible, whereas since S1 is a
set, it is its own 0-truncation.

What is happening is that classical homotopy theory has led us to confuse
two different things in our minds. On one hand, a topological space is a set
with a notion of “cohesion” enabling us to define continuous functions and
paths. The nearby points of a continuous path are “close” in some sense, but
they are still distinct. On the other hand, an ∞-groupoid has a collection of
“points” or “objects,” plus for each pair of objects a collection hom(x,y) of
equivalences or “ways in which x and y are the same,” plus for each f,g ∈
hom(x,y) a collection homhom(x,y)(f ,g) of ways in which f and g are the
same, and so on. When hom(x,y) is nonempty, x and y really are the same
to ∞-groupoid theory, just as in plain category theory we do not distinguish
between isomorphic objects.

The relation between topological spaces and ∞-groupoids is that from
any space X, we can construct an ∞-groupoid

�
X, called its fundamen-

tal ∞-groupoid or shape.40 The objects of
�

X are the points of X, the
objects of hom(x,y) are the continuous paths from x to y, the objects of
homhom(x,y)(f ,g) are the continuous end point–preserving homotopies from f

to g, and so on. The confusion arises because we can study
�

X without actually

40 The symbol
�

is not an integral sign (
∫

) but an “esh,” the IPA sign for a voiceless postalveolar
fricative (English sh); in LATEX it is available as with the package phonetic. An alternative
notation is %∞, but the letter % is overworked in type theory already. The term “shape” comes
from “shape theory,” which also studies generalizations of

�
for ill-behaved topological spaces.
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constructing it (or even having a definition of “∞-groupoid”), by working
with X itself and “doing everything up to homotopy”; and historically, people
did this for a long time before they even thought of defining ∞-groupoids.
Thus, algebraic topologists came to use the word “space” for objects that were
actually being treated as ∞-groupoids.41

Homotopy type theory forcibly brings the distinction between topological
spaces and ∞-groupoids front and center, since it allows us to talk about
∞-groupoids directly in a foundational system that is also strong enough to
study topological spaces. In particular, we have the previously noted contrast
between the types S1 and S1. The relation between the two ought to be that
S1 = �

S1; but how are we to express this in type theory?

5.2 Combining Topology with Homotopy

The description of
�

X in Section 5.1 treats both topological spaces and
∞-groupoids as structures built out of sets. However, we have seen that in
type theory, we can treat both of them synthetically, suggesting that

�
ought

also to have a synthetic description. This requires combining the perspectives
of Sections 3 and 4, obtaining a type theory in which topology and homotopy
are synthetic at the same time. That is, we allow some types to have “intrinsic
topology,” like S1, and also some types to have “intrinsic homotopy,” like S1. It
follows unavoidably that there must also be types with both nontrivial topology
and nontrivial homotopy.

At this point the advantages of a synthetic treatment become especially
apparent. Classically, to combine structures in this way, we have to define
a new structure called a “topological ∞-groupoid” or a “topological
∞-stack”: an ∞-groupoid equipped with a “topology” on its objects, another
on its morphisms, and so on. If such a gadget has no nontrivial morphisms,
it reduces to a topological space; while if all the topologies, are discrete it
reduces to an ordinary ∞-groupoid. Formally, we might define these to be
∞-stacks on one of the sites {N∞} and {Rn}n∈N from Section 2.7, comprising
∞-toposes of consequential ∞-groupoids and continuous ∞-groupoids (or
smooth ∞-groupoids). We would then need to develop a whole theory of such
objects.

41 Arguably, therefore, ∞-groupoids do not even belong in a book about notions of space.
However, tradition is weighty, and moreover, ∞-groupoids do share some important attributes
of notions of space, notably their ability to be present as “background structure” in the sense
described in the introduction. It is to emphasize this aspect, but also their distinctness from
other notions of space, that I sometimes call them homotopy spaces.
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In type theory, however, we have seen that types “potentially” have both
topological and homotopical structure, which we can draw out by asserting
axioms such as Brouwer’s theorem or Voevodsky’s univalence axiom. Thus,
to obtain a synthetic theory of “topological ∞-groupoids” is simplicity itself:
we simply assert both groups of axioms at the same time. Of course, to model
the theory in classical mathematics we still need to construct topological
∞-groupoids, but we do not need to bother about that when working in the
theory.

Schreiber’s chapter in the companion volume [2] argues that topological
∞-groupoids (or some enhancement thereof) are the correct context in which
to formulate modern theories of physics. (For more general discussion of
stacks, see Chapter 8.) The type theory modeled by (∞,1)-categories of
this sort is an active field of current research called cohesive homotopy type
theory [74, 96, 97, 105]. I will conclude by sketching some of its most
appealing features.

5.3 Modalities and Cohesion

The synthetic description of
�

involves a different way to access the latent
topological structure of types, based on Lawvere’s ideas of cohesion [74].
Recall from Section 2.8 that most “topological” toposes come with a string of
adjunctions

topos of spaces

�

��
topos of sets

�

��

' ' ∇
��

where � is the underlying-set functor, � constructs discrete spaces, and ∇
constructs indiscrete spaces, and � and ∇ are fully faithful. If we restrict
our attention to the topos of spaces, then what is left of this adjoint triple
is a monad & = ∇� that reflects into the subcategory of indiscrete types, a
comonad ' = �� that coreflects into the category of discrete types, and an
adjunction ' ' & such that the induced transformations &' −→ & and ' −→ '& are
isomorphisms.

We can incorporate & and ' in type theory as higher modalities. Traditional
“modal logic” studies propositional modalities, most famously “it is necessary
that P ” (usually written �P ) and “it is possible that P ” (usually written
♦P ), but also others, such as “so-and-so knows that P ,” “it will always be
the case that P .” Since these often have monad- or comonad-like properties
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(e.g., �P −→ P and �P −→ ��P ), and propositions are particular types
(see Section 3.1), we may consider monads and comonads acting on all
types as “higher-categorical modalities.” I refer to type theory with ' and &

as spatial type theory, since it is designed for “topological” models such as
consequential, continuous, and smooth sets or ∞-groupoids. We will not state
its rules precisely here since they involve some technicalities, but the practical
upshot is that ' and & behave as described above; see [105] for a more extensive
discussion.

As an example, these modalities allow us to state “discontinuous” versions
of classicality axioms, such as LEM, that do hold in these intended models. The
usual version of LEM is

∏
P :�‖P + ¬P‖, which is false in the topological

models, as discussed in Section 3.2, because a space is not generally the
disjoint union of a subspace and its complement. But

∏
P :� &‖P + ¬P‖ and∏

P :'�‖P + ¬P‖ are true in these models: both equivalently express the
true statement that any space is the smallest subspace of itself containing
both any given subspace and its complement. They imply in particular that the
(equivalent) subuniverses of discrete and indiscrete types satisfy ordinary LEM
and thus are a place for classical reasoning inside synthetic-topological type
theory. (Recall from Section 3.2 that the indiscrete spaces are also usually the
¬¬-sheaves. This often follows automatically in spatial type theory;
see [105].)

Now, in many cases, the functor � also has a left adjoint, that is, the discrete
spaces are reflective as well as coreflective. A map from a space A into a
discrete set �B breaks A up as a coproduct of one disjoint piece for each
element of B. Thus if A is a coproduct of “connected components,” any map
A −→ �B is uniquely determined by where each connected component goes,
that is, by a map π0(A) −→ B. Thus π0 is left adjoint to �, or more precisely
any left adjoint to � deserves the name π0. Note that this “π0(A)” is not the
same as the 0-truncation ‖A‖0 discussed in Section 4; the latter treats types as
∞-groupoids, while this one treats them as topological spaces. In a moment
we will see that π0(A) = ∥∥� A

∥∥
0.

Such a left adjoint π0 exists for continuous sets and smooth sets, though not
for consequential spaces (because the latter contain spaces, such as N∞, that
are not locally connected, hence not a coproduct of connected components). A
topos with an adjoint string π0 ' � ' � ' ∇ where � and ∇ are fully faithful
and π0 preserves finite products (and perhaps more; see [60, 74, 105]) is called
cohesive.

Finally, this all works basically the same in the ∞-case: “cohesive
∞-toposes,” such as continuous and smooth ∞-groupoids, are related to
the ∞-topos of ∞-groupoids by a string of ∞-adjunctions, which can be
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represented by modalities in type theory.42 For intuition, a “discrete” cohesive
∞-groupoid is one whose topologies are discrete at all levels, that is, neither
its points nor its equalities between points, and so on, have any interesting
topology. It could still have interesting ∞-groupoid structure; for instance, S1

is discrete (but S1 is not!).
The magical thing is that for ∞-toposes, a left adjoint of � is no longer just

π0; instead, it deserves to be called the shape functor
�

discussed above! To
prove this is technical (see [96, Proposition 4.3.32] or [26, Section 3]), but we
can get a feel for it with examples.

First of all, by comparing universal properties, we see that (denoting a
left ∞-adjoint of � by

�
) the set

∥∥� A
∥∥

0 is a reflection of A into discrete
sets (i.e., homotopy 0-types). Thus, the 1-categorical argument above implies
that

∥∥� A
∥∥

0 deserves the name π0(A), which is what we expect for the
shape of A.

Second, we have seen that S1 = coeq(1 ⇒ 1), and since the discrete types
are closed under colimits (being coreflective), S1 is also discrete. On the other
hand, we have S1 = coeq(R ⇒ R), where one map R −→ R is the identity and
the other is “+1.” Since left adjoints preserve colimits, we will have

�
S1 = S1

as long as
�
R = 1. This is true for continuous ∞-groupoids (an analogous fact

about the smooth reals is true for smooth ∞-groupoids).
In fact, the discrete objects in continuous ∞-groupoids are essentially

defined by the property that
�
R = 1. More specifically, a type A is discrete

if and only if every map R −→ A is constant, or more precisely, if the
map const : A −→ (R −→ A) is an equivalence. This axiom is called real-
cohesion [105]; it immediately implies that

�
R = 1. (The real-cohesion axiom

also allows us to construct
�

as a higher inductive type by “localizing” in the
sense of Section 4.4 at the map R −→ 1.)

We can make similar arguments in other examples. For instance, the
topological 2-sphere S2 is the pushout of two open discs (each isomorphic to
R2) under an open strip (isomorphic to S1 × R). Thus, as long as

�
preserves

products,
�
S2 is the pushout of two copies of 1 under S1, that is, the homotopy-

theoretic suspension of S1, which is one definition of the homotopical 2-
sphere S2. Many familiar spaces can be presented as “open cell complexes”
of this sort, thereby identifying their shapes with the expected discrete
∞-groupoids.

42 Of course, the formal connection between cohesive ∞-toposes and cohesive type theory is at
least as difficult as the ordinary case discussed in Section 4.6; indeed the cohesive case has not
yet been studied formally at all. However, the cohesive type theory at least is fully rigorous as
a formal system in its own right, with reference to ∞-toposes only for motivation.
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We do have to avoid the more classical “closed cell complexes” that glue
intervals and closed discs along boundaries. Gluing the end points of the
unit interval [0,1] in the topos of continuous sets does not produce S1 but
rather a circle with a “speed bump” at which any continuous path must stop
for a finite amount of time before proceeding. This problem is avoided by
consequential spaces, but as remarked previously, that topos fails to have

�
. In

fact, as discussed briefly in [58], it seems impossible to have both closed cell
complexes and

�
.

This description of
�

enables synthetic arguments that involve both topolog-
ical spaces and homotopy spaces and their relationship. For instance, in [105],
I used

�
S1 = S1 to prove the Brouwer fixed point theorem synthetically. This

is a theorem about the topological closed disc D2 (whose boundary is S1),
but its classical proof uses a homotopical argument, constructing a retraction
D2 −→ S1 which is impossible since S1 is not homotopically contractible.
Synthetically, the proof can be done in almost exactly the same way, inserting�

at the last step, and using the fact that �S1 = Z mentioned in Section 4.5
(which uses the univalence axiom) so that

�
S1 (being S1) is not a retract of

�
D2

(being 1).
At a more advanced level, Schreiber’s chapter in the companion volume [2]

shows that smooth ∞-groupoids – and, by extension, cohesive type theory
– are a natural setting for differential cohomology and gauge field theory,
which involve the interaction between smooth spaces and homotopy spaces.
The synthetic approach to

�
is thus not just a conceptual way to explain the

difference between topological and homotopy spaces but a practical tool for
combining them in applications.

6 Conclusion

What does the future hold for type theory and synthetic mathematics? Current
research divides into two threads. One is “internal”: developing mathematics
in type theory. This includes both ordinary mathematics in constructive logic
without LEM or AC, so as to be valid in all toposes (Section 3.2), and also
more novel synthetic mathematics using nonclassical structure (Sections 3.4, 4,
and 5).

The constructivization of ordinary mathematics has a long history, but
plenty of fundamental questions remain unanswered, due in part to a tra-
dition among some “constructivists” of neglecting propositional truncation
and assuming countable choice. Synthetic mathematics is newer: synthetic
differential geometry is several decades old but not well known outside
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topos theory, while synthetic homotopy theory is only a handful of years
old [77, 112], and synthetic topology is in between. Thus, there are many open
questions regarding which results of “analytic” mathematics can be reproduced
synthetically.

The other thread of current research is “metatheoretic.” As mentioned
in Sections 4.6 and 4.7, there are many unsolved problems in the (∞,1)-
categorical semantics of type theory. There are also purely syntactic open
problems, such as reconciling the topological/homotopical point of view with
the computational one from Section 3.3. For instance, can we make HITs
and univalence “compute,” i.e., maintain the property that all terms reduce
to a “value”? At present the most successful approaches to this use “cubical”
methods (e.g., [3, 4, 32, 34]).

Some problems involve both syntax and semantics. For instance, homotopy
type theory is an excellent synthetic language for higher groupoids, but what
about higher categories? Any classical definition of (∞,1)-category (such
as quasi-categories) can be repeated inside the sets of type theory, but that
would not be what we want: a good definition of (∞,1)-category in homotopy
type theory should use the synthetic notion of ∞-groupoid provided by the
types. The most promising approach is something like Rezk’s “complete Segal
spaces” [93]; this can be done for 1-categories [1], but for the ∞-case, it would
require a notion of “coherent simplicial type,” which so far has proven elusive.

This is a special case of another open question that I call the “problem
of infinite objects,” which also applies to other homotopy-theoretic notions
like A∞-spaces and structured ring spectra. Classically, such infinite coherence
structures involve strict point-set-level equalities. For instance, A∞-spaces are
strict algebras for a topological operad; the weakness is in the operad. But
homotopy type theory, in its most common form, severely restricts the use
of strict equality: it can be accessed only using dependent types (e.g., terms
belonging to a dependent type are strict sections of a fibration) and judgmental
equality. This is good because it makes everything automatically homotopy
invariant, but it means we lack a flexible way to assemble arbitrary higher
coherence structures. (In particular, while synthetic homotopy theory can do
a lot, further technical advances are needed before it could reproduce all
of classical homotopy theory.) This problem might be solvable completely
internally, but it might also require modifying the syntax, leading to a whole
host of new metatheoretic problems.

Let me end with some remarks about the philosophical implications of
synthetic mathematics. I have presented type theory in a way intended to
seem useful and unobjectionable to a classical mathematician: as a syntax for
reasoning about structured categories in a familiar language. Crucial to the
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usefulness of this syntax is the fact that it, like ZFC set theory, is general
enough to encode all of mathematics, and therefore anything we can prove
(constructively) in ordinary mathematics is automatically also “true internally”
in any category.

This leads naturally to a slightly different question: can we actually use type
theory as the foundation for mathematics? That is, must we consider the objects
of mathematics to “really” be built out of sets, with “types” just a convenient
fiction for talking about such structures? Or can we consider types to be the
basic objects of mathematics, with everything else built out of them?

The answer is undoubtedly yes: the “sets” in type theory can encode
mathematics just like the sets of ZFC can. Of course, there are subtleties.
On one hand, if our type theory is constructive, we need to do our math-
ematics constructively. On other hand, type theory often suggests different
ways to do things, using the synthetic spatial or homotopical structure of
types instead of analytic topological spaces or ∞-groupoids.43 Both of these
involve their own open problems; but they are only potential enhancements
or refinements of ordinary mathematics, so regardless of how they turn
out, it is certainly possible to treat type theory as a foundation for all of
mathematics.

The real question, therefore, is not “can we?” but “should we?” This is
where things get more philosophical. Over the past century, mathematicians
and philosophers have become accustomed to the fundamental objects of
mathematics being discrete sets, with no spatial or homotopical structure.
However, a priori there is no reason this has to be the case. Indeed, some
of the early 20th-century constructivists, notably Brouwer, can (with a bit of
hindsight) be read as arguing for the intrinsically spatial nature of mathematical
objects.

But can spaces really be fundamental like sets are? A discrete set certainly
seems simpler, and hence more fundamental, than a set equipped with spatial
structure. But this argument merely begs the question, since if spaces are fun-
damental objects, then they are not just sets “equipped with spatial structure.”
In spatial type theory there is no obvious nontautological “structure” with
which we can equip the discrete set of reals 'R that determines the space
of reals R. Is 'R “simpler” than R? When we consider all the pathological
nowhere-continuous functions supported by 'R but not R, it seems at least
consistent to believe that R is the simpler. Moreover, discrete sets are just a

43 In particular, for type theory to be an autonomous foundation for mathematics, it ought to
suffice for its own metatheory, including the freeness of its own classifying (∞,1)-category;
but we do not yet even know how to define (∞,1)-categories in homotopy type theory.
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particular kind of space; so even if they are simpler, that does not necessarily
argue that nondiscrete spaces cannot be fundamental. The empty set ∅ is
probably simpler than ℵω, but in ZFC they are equally fundamental objects
(i.e., sets).

Similar arguments apply to homotopy spaces, that is, ∞-groupoids. One
of the central insights of category theory and homotopy theory is that no
class of mathematical objects should be considered without the corresponding
notion of isomorphism or equivalence: we study groups up to isomorphism,
spaces up to homomorphism, categories up to equivalence, and so on. Thus,
all mathematical collections naturally form groupoids, or more generally
∞-groupoids, when equipped with the relevant “notion of sameness.”
(See [106] for further philosophical discussion of this point.) The set44 of
all groups is much less tractable, and much less interesting, than the category
of all groups; so even though the former is “simpler” in the sense of containing
no nontrivial automorphisms, it is reasonable to regard the latter as being at
least as fundamental.

One possible objection to treating spaces as fundamental is to ask how
we should decide which rules our “spaces as fundamental” should satisfy.
Indeed, we have already seen that there are different kinds of synthetic
topology adapted for different purposes, modeled respectively by consequen-
tial, continuous, or smooth ∞-groupoids. Moreover, other kinds of synthetic
mathematics, such as synthetic domain theory, synthetic differential geometry,
and other fields waiting to be developed, will have their own toposes and their
own type theories.

However, if we shift perspective a bit, we can see that this is a feature rather
than a bug. Why must we insist on singling out some particular theory as “the”
foundation of mathematics? The idea of a “foundation for mathematics” stems
from the great discovery of 20th-century logic that we can encode mathematics
into various formal systems and study those systems mathematically. But in the
21st century, we are sufficiently familiar with this process that we no longer
need to tie ourselves to only one such system.45 Even ZFC has a role from this
point of view: it is a synthetic theory of well-founded membership structures!

Bell [18] makes an excellent analogy to Einstein’s theory of relativity.
In Newtonian physics, there is a special absolute “rest frame,” relative to
which all motion can be measured. There are moving observers, of course,
but they are second-class citizens: the standard laws of physics do not always

44 Or “proper class.”
45 In particular, it is meaningless to ask whether statements like the continuum hypothesis are

“true”; they are simply true in some systems and false in others. This perspective is very natural
to a category theorist but has recently made inroads in set theory as well [48].
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apply to them. They feel “fictitious forces,” like the centrifugal force and
Coriolis force on a spinning merry-go-round or planet, that are not really forces
but just manifestations of “truly” inertial motion in a noninertial reference
frame.

By contrast, Einsteinian physics can be formulated equally well in any
reference frame and obeys the same laws in each, with consistent rules
for transforming between reference frames. Some frames, called “(locally)
inertial,” lead to a simpler formulation of the laws; but often this is outweighed
by the relevance of some other frame to a particular problem (such as the
noninertial reference frame of the Earth’s surface). The centrifugal and Coriolis
forces are exactly as real as any other force; in fact they are simply instances
of gravitational force! To an observer on the Earth’s surface, an inertial
observer in a spaceship flying by is the one who is spinning (along with the
rest of the universe), thereby feeling “fictitious” forces that cancel out these
gravitational ones.

Similarly, in ZFC orthodoxy, there is an absolute notion of “set” out
of which everything is constructed. Spaces exist, but they are second-class
citizens, ultimately reducible to sets, and the basic axioms of set theory do not
apply to them. But from a pluralistic viewpoint, mathematics can be developed
relative to any topos, obeying the same general rules of type theory. We have
consistent rules for translating between toposes along functors, and there are
some toposes in which mathematics looks a bit simpler (those satisfying LEM
or UIP). However, there is no justification for regarding any particular topos
or type theory as the “one absolute universe of mathematics.” An observer
in a topos of classical mathematics can construct a topos of spaces in which
all functions are continuous, thereby explaining its different behavior. But
an observer inside a topos of spaces can also construct a topos of classical
mathematics as the “discrete” or “indiscrete” objects, whose different behavior
is explained by the triviality of their cohesion – and both points of view are
equally valid. Just as modern physicists switch reference frames as needed,
modern mathematicians should be free to switch foundational systems as
appropriate.

This is particularly relevant for physicists and other scientists interested in
using mathematics rather than debating its Platonic existence. If a particular
synthetic theory is useful in some application domain (see, e.g., Schreiber’s
chapter in the companion volume [2]), we are free to take it seriously rather
than demanding it be encoded in ZFC. Set theory and 20th-century logic
were crucial stepping-stones bringing us to a point where we could survey
the multitude of universes of mathematics; but once there, we see that there is
nothing special about the route we took.
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