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Š. Raudys*

Institute of Mathematics and Informatics, Akademijos 4, Vilnius 2600, Lithuania

Received 2 November 1998; accepted 16 February 2000

Abstract

We show that during training the single layer perceptron, one can obtain six conventional statistical regressions: a primitive, regularized,
standard, the standard with the pseudo-inversion of the covariance matrix, robust, and minimax (support vector). The complexity of the
regression equation increases with an increase in the number of iterations. The generalization accuracy depends on the type of the regression
obtained during the training, on the data, learning-set size, and, in certain cases, on the distribution of components of the weight vector. For
small intrinsic dimensionality of the data and certain distributions of components of the weight vector the single layer perceptron can be
trained even with very short learning sequences. The type of the regression obtained in SLP training should be controlled by the sort of cost
function as well as by training parameters (the number of iterations, learning step, etc.). Whitening data transformation prior to training the
perceptron is a tool to incorporate a prior information into the prediction rule design, and helps both to diminish the generalization error and
the training time.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two most important problems in statistical data analysis
are prediction and classification (0, 1 loss). In the prediction
task, we are trying to predict the value of a continuous
variable, say y, according to a set of predictors
�x1; x2;…; xp� � x 0: An example is a linear regressiony�
w 0x 1 w0; where w0 and w � �w1;w2;…;wp� 0 are the
weights of the regression equation. In order to find the
weights, one needs a training-set data (y1, x1), (y2, x2), …,
(yN, xN). In the artificial neural network (ANN) approach to
find the weights, one minimizes a certain cost (loss) func-
tion, e.g.

Cost� 1
N

XN
i�1

C�yi 2 f �w 0xi 1 w0��; �1�

whereC (c) is a chosen pattern error (loss) function, andf(s)
a non-linear activation function. In the classification task we
have 0–1 loss, i.e. the loss is equal 0 if the vector to be
classified is recognized correctly, and the loss is equal to
1 if we have a misclassification. In the prediction problem,
we have a continuous loss. The most popular loss function is

the sum of squares functionC�c� � c2
: In prediction, one

can use a scaled sigmoid activation functionf �s� � 1=�1 1
exp�2as��2 0:5; wherea is a scaling parameter. Iff �s� �
s; andC�c� � c2 we have a linear single layer perceptron
(SLP). If f (s) is a non-linear function, we have a non-linear
SLP. Note, if the perceptron’s weights are small, all
valuessi � w 0xi 1 w0 are small too. Thenf �s� � s; and,
practically, we have the linear SLP.

In the ANN approach, the weight vector is found in an
iterative procedure where the cost function is minimized.
One of the simplest procedures is the delta rule (back propa-
gation, gradient descent) where the weight vector is adapted
according to iterative rule

w�t11� � w�t� 2 h
2costl
2w

; �2�

whereh is a learning-step.
In Part I (Raudys, 1998a) it was shown that in training,

the non-linear SLP classifier evolves. In the evolution
process, the weights of the perceptron increase, and the
cost function of the sum of squares changes gradually. If
certain conditions are satisfied, the decision boundary of
SLP can become identical or close to that of seven regular
statistical classifiers: (1) the Euclidean distance classifier;
(2) the regularized linear discriminant analysis; (3) the stan-
dard Fisher linear discriminant function; (4) the Fisher
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linear discriminant function with a pseudo-inversion of the
covariance matrix; (5) the generalized Fisher discriminant
function; (6) the minimum empirical error classifier, and (7)
the maximum margin (support vector) classifier. The
complexity of the classifier changes during the training
process. At first, we estimate only mean vectors of the
pattern classes, then gradually we begin to estimate the
covariance matrix, and, at the very end of the training
process, we use only highest order statistical moments.

One may hope that in the prediction task (regression), we
also have a similar evolution process. Up to now, it was
known that at the beginning of the training of the linear
single layer perceptron, we have the regularization and at
the end, we have a standard sum of squares regression
(Sjoberg & Ljung, 1992; Wang & Venkatesh, 1994). In
the finite learning-set case, the generalization prediction
error of the standard regression is determined by a simple
expression (Davisson, 1965)

Es 2
generalization� s 2

ideal
N

N 2 p
: �3�

The above equation shows that the generalization error
decreases when the learning set sizeN increases. WhenN
is smaller thanp, the dimensionality, an asymptotic analysis
performed by a statistical mechanics approach shows that
the learning curveEs 2

prediction� f �N� has a peaking charac-
ter: whenN increases from 1 up top, the generalization error
decreases at first, and then begins to increase (for the predic-
tion task see e.g. Bo¨s, 1996; Krogh & Hertz, 1992; and for
the classification task, Raudys, 1998b; Raudys & Duin,
1998). For the regularized regression obtained after few
first iterations, we have much more complex equations
(Wang & Venkatesh, 1994). One may hope that while train-
ing the non-linear SLP, one can obtain a wide assortment of
regression rules too. The objective of the present paper is to
consider this problem more exhaustively. A thorough
unified analysis is most easy to accomplish in the simple
SLP case. This analysis gives new information and ideas,
which help to understand the complex learning behavior of
multilayer perceptrons. In Section 2, we present several
types of the linear regressions commonly used in statistical
data analysis. In Section 3, we analyze regressions that can
be obtained while training the non-linear SLP by the stan-
dard back propagation rule (BP) and by using various types
of pattern error functionC (c). In Section 4, we use standard
multivariate analysis techniques to derive the generalization
error formulae for the regressions discussed in the previous
two sections. We show that there, similarly to the classifica-
tion task (see e.g. Raudys, 1967, 1998b), the intrinsic
dimensionality of the data, as well as components of the
optimal weight vectorwp play an important role. In Section
5, we discuss tools and criteria which can be used to control
the type and complexity of the regression equation obtained
while training the SLP. In Section 6, we present a discussion
and concluding remarks.

2. Primitive, regularized, standard, robust and minimax
(support vector) regressions in statistical data analysis

2.1. Standard regression

In order to simplify analytical derivations in a major part
of this paper, without loss of generality we assume that the
learning set data is “normalized”, i.e. the sample mean of
vector

y

X

" #
is equal to zero. For linear regressions, this assumption leads
to ŵ0 � 0: In the standard least square approach, we use a
sum of squares pattern error functionC�c� � c2

: After
minimization of the sum of the squares cost function we
obtain

ŵST � S21
XXSXy; �4�

whereSXX andSXy are block components of a conventional
sample maximum likelihood estimate of the covariance
matrix

S �
Syy SyX

SXy SXX

" #

of a vector

y

X

" #
:

In multivariate analysis, the weight vector (4) is obtained
as a conditional mean E[yuX] of the Gaussian vector

y

X

" #
:

For this, instead of true components of the covariance
matrix S (we use sample estimates. We refer to this type
of regression asthe standardone.

2.2. “Primitive” regression

Some investigators in the field of applied research are
unfamiliar with statistical methods. They normalize the
data by making all sample variances ofy and X to be
equal to 1, and intuitively are using correlation coefficients
betweeny and components of the vectorX as components of
the weight vectorw. In this case, we have a weight vector

ŵ PRIM � SXy; �5�
We will refer to this type of regression as theprimitive

regression. Note, ifS � I ; then in the multivariate Gaussian
case, with an increase inN, the learning-set size, this
approach leads to the optimal prediction rule. Otherwise
we will obtain a bias.
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2.3. Regularized regression

WhenN, the number of the learning-set vectors, is small,
one cannot invert the sample covariance matrixSXX: One of
the possibilities to overcome this kind of difficulty is to add
small positive constants,l , to all diagonal elements of the
matrix SXX (Harley, 1963, 1965; Hoerl & Kennard, 1970).
This is regularized regression(RR):

ŵ RR � �SXX 1 Il�21SXy: �6�

2.4. Standard regression with a pseudo-inverse

When the sample sizeN is smaller thanp, the number of
features, the matrixSXX becomes singular. An alternative to
regularized regression is toignore directionscorresponding
to zero eigenvalues. For this we have to perform a singular
value decomposition ofSXX : SXX � TDT 0: Let d be the
r × r diagonal matrix corresponding tor non-zero eigen-
values inD, and r be the rank ofSXX: Then the pseudo-
inverse of the matrixSXX is defined as

S1
XX � T

d21 0

0 0

" #
T 0:

Regularized regression can also be expressed in terms of
eigenvalues and eigenvectors:SXX 1 Il � T�D 1 Il�T 0:
Thus, in regularized regression, we are adding constantl
to all eigenvalues of matrixSXX:

2.5. Robust regression

In various real world problems, sometimes we have atypi-
cal training samples where one or several components are
recorded with errors or affected by some abnormal noise. In
statistics, these atypical observation vectors are called
outliers. The outliers affect the estimates of the mean vector
and the covariance matrix of

y

X

" #

and reduce the prediction accuracy. There are a number of
techniques calledrobust statistics to deal with such
problems (see e.g. Huber, 1981). In a regular robust
approach, instead of the standard maximum likelihood esti-
mate of the matrix

S�
Syy SyX

SXy SXX

" #
;

one uses a robust (weighted) estimate. As the robust esti-

mates of the mean and the covariance matrix one can use

m̂ROBUST�

X
j

g �X j�X jX
j

g �Xj� ; and

Ŝ ROBUST�

X
j

g �X j��X j 2 m̂ROBUST��X j 2 m̂ROBUST�
0

X
j

g �X j�
;

�7�
whereg (X j) is a weighting factor, which decreases mono-
tonically with increase in distance

D�X j ; m̂ROBUST� � �X j 2 m̂ROBUST� 0�X j 2 m̂ROBUST�:
For example

g�X j� � 1 if D�X j ; m̂ROBUST� , 2p; and D�X j 2 m̂ROBUST�

� 1=D�X j 2 m̂ROBUST� otherwise:

2.6. Minimax (support vector) regression

Real world problems exist where one canassumethat in
the linear modely� wx 0 1 w0 1 j; a noisej is a random
variable distributed uniformly in an unknown interval
(2a,b). In such cases, instead of minimizing the sum of
squares cost (1), some researchers minimizea maximal
deviation of learning-set observationsyj from predicted
values ypredicted

j � ŵ 0xj 1 w0; j � 1;2;…;N: This type of
regression is calleda minimax regression. Only a small
number (R) of most distant vectorsXSV1, XSV2, …, XSVR,
determine a position of the prediction equationy� ŵ 0x 1
w0: TheseR vectors are referred to assupporting vectors.
Then the prediction (regression) rule is calledsupport vector
regression. It is analogous to the support vector classifica-
tion rule (see e.g. Cortes & Vapnik, 1995) and SV regression
(Drucker, Burges, Kaufman, Smola & Vapnik, 1996).

3. Evolution of the SLP in the training process

3.1. Primitive regression

Consider the iterative gradient descent training procedure
(2) of the linear single layer perceptron where a sum of
squares cost function

Cost� 1
2

1
N

XN
i�1

�yi 2 w 0xi�2; �8�

is minimized. In the above equation, we added 1/2 for
cosmetic reasons, and according to the assumptionsXN
i�1

yi � 0;
XN
i�1

xi � 0;
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we have skipped the thresholdw0. Then

2cost
2w

� 2
1
N

XN
i�1

xiyi 2
1
N

XN
i�1

xix
0
iw�t�

 !

� 2SXy 1 SXXw�t�; �9�

and

w�t11� � w�t� 1 h�SXy 2 SXXw�t�� � �I 2 hSXX�w�t� 1 hSXy:

�10�
Let us start training from zero initial weights, i.e.w�0� � 0:
Then after the first iteration we have

w�1� 1 hSXy: �11�

The above equation indicates that forh � 1 after the first
iteration we obtain primitive regression. Let now, prior to
training, we performa linear transformation of the data:
Z � FX; whereF � D21=2T 0; and D is the p × p diagonal
matrix composed from eigenvalues of matrixSXX; andT is
the p × p orthonormal matrix of the eigenvectors ofSXX:

Then after the first iteration

wZ�1� � h

N

X
j

Z jyj � h

N

X
j

D21=2T 0X jyj � hD21=2T 0SXy;

and the prediction equation

y�Z� � Z 0wZ�1� � h�X 0TD21=2�D21=2T 0SXy
� X 0hS21

XXSXy

� hX 0ŵST
; (12)

whereŵST has been defined in Eq. (4).
Thus, forh � 1; after the first iteration in the transformed

Z space, we obtain the standard regression in the originalX
space. This is an important conclusion, which can be used to
incorporate additional information (statistical hypothesis
concerning the distribution model of vectorX) into the
perceptron design. Actually it is a way how to integrate
statistical and neural network approaches to design the
linear prediction equation.

3.2. Regularized regression

Consider the learning process further in the second and
following iterations. After the second iteration we obtain

w�2� � �2hI 2 h2SXX�SXy; and further

w�3� � �3hI 2 3h2SXX 1 h3S2
XX�SXy;

..

.

w�t� �
Xt

s�1

Cs
t �21�s21hsSs21

XX �SXy � �I 2 �I 2 hSXX�t�S21
XX�SXy

�13�

For smallh , we can use only the first terms of Eq. (13)

w�t� � thI 2
t�t 2 1�

2
h2SXX

� �
SXy � th�I 2 lSXX��SXy;

�14�
wherel � ��t 2 1�h=2�:

Use of an expansion�I 2 lSXX�21 � I 1 lSXX 2 …: for
very smalll results in

w�t� � 2t
t 2 1

�SXX 1 lI �21SXy: �15�

For smallh (and t too) the resulting weight vector is
proportional to that of the regularized regressionŵRR (Eq.
(6)). This means, after the first few iterations we have a
notable regularization (largel � �2=�t 2 1�h��: The degree
of regularization diminishes monotonically with increase in
t, the number of iterations.

3.3. Standard regression

Eq. (15) is valid only whenl � ��t 2 1�h=2� is small. In
addition, it does not show the behavior of the weight vector
when the number of iterations increases without bound. Let
the learning steph diminish with increase in the number of
iterations with a certain speed. Then we can arrive to a
minimum of the cost function (see e.g. Amari, 1967). Equat-
ing (9) to zero results in

w�t!∞� � S21
XXSXy � ŵST

; �16�
i.e. the standard regression for the centered data.

3.4. Standard regression with the pseudoinversion of the
covariance matrix

In Sections 3.2 and 3.3, we have assumed the sample
covariance matrixSXX to be non-singular. Whenp, the
dimensionality of vectorX, exceedsN, the number of learn-
ing examples, this matrix becomes singular. Let the rank of
SXX be r, and the singular value representation

SXX � T
d 0

0 0

" #
T 0;

whereT is the orthogonal eigenvector matrix, andd ther ×
r diagonal eigenvector matrix corresponding tor non-zero
eigenvalues ofSXX: Let us denote

U � T 0X �
V

U2

" #
; SUU � T 0SXXT �

d 0

0 0

" #
;

SUy � T 0SXy �
SVy

SU2y

" #
;

whereV is r-variate vector column. Utilization of the repre-
sentation (13) gives that after thetth iteration, the regression
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equation

y�t��X� � X 0w�t� � X 0TT 0w�t�

� X 0T
Xt

s�1

Cs
t �21�s21hs�T 0SXXT�s21�T 0SXy

� V 0
Xt

s�1

Cs
t �21�s21hsds21SVy: �17�

Representation (17) means that in this (singular) case, the
iterative search for the weights of the perceptron is
performed in a subspace ofr eigenvectors corresponding
to r non-zero eigenvalues ofSXX: This is a more condensed
and rigid proof than that presented in the first part of the
paper (Raudys, 1998a). This proof is also valid for the coef-
ficients of the linear classifier obtained while training the
SLP classifier in the very small learning-set case.

3.5. Robust regression

Up to this moment we have considered the linear single-
layer perceptron. Consider now thenon-linearSLP trained
with the following cost function

Cost� 1
2

1
N

XN
i�1

� f �yi�2 f �w 0xi 1 w0��2; �18�

where f (s) is a non-linear activation function which satu-
rates whenusu increases (again we assume sample means,�y
and �X, to be zero). For example

f �s� � 1
1 1 e2as 20:5; �19�

where a positive scalara (controls the degree of non-linear-
ity—the proportion of observations with reduced influence
while determining the weights of the regression.

The non-linear activation function diminishes the influ-
ence of overly small and overly large values ofyi (as well as
w 0xi 1 w0� and reduces the influence of outliers distant from
�y� �1=N�Pi yi andw 0 �X; � �X � �1=N�Pi X i�: In comparison
with standard robust regression (see Section 2.5), an effect
of only a portion of the outliers is reduced.

Another possible cost function, which can be used to
obtain the robust regression is

Cost� 1
2

1
N

XN
i�1

C�a�yi 2 �w 0xi 1 w0���; �20�

where andC (s) is a non-linear pattern error function, which
saturates where a differenceusu � uyi 2 �w 0xi 1 w0�u is
large. The positive scalara controls the degree of non-line-
arity—the proportion of ignored observations (robustness).
An example of the robust pattern error function can be

C�s� �
1 2 cos�s� if 2 p # s # p

2 otherwise

(
: �21�

This cost functions ignores observations with large
prediction errors. Whena is small almost all observations
contribute to the regression coefficients. Whena is large,
only a proportion of observations is taken into account. In
Fig. 1, we present an example of the use of adaptive robust
regression. The Gaussian strongly correlated data is
contaminated by Gaussian large variance noise. We see
the standard regression (line 1) fails to find the right predic-
tion function. Robust adaptive regression with cost (18) and
a � 6 performs much better (line 4). Robust adaptive
regression with cost functions (20) and (21) anda � 5
(line 5) practically ignores all atypical observation vectors,
but fails to do this whena(is small (line 3).

3.6. Minimax (support vector) regression

In order to minimize the maximal deviationsuyi 2
�w 0xi 1 w0�u among allN training vectors, one can use the
cost function (20) with the activation function whose value
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Fig. 1. Robust SLP regression: 1—the standard regression; 2,4—Robust
SLP (18) witha � 0:3; anda � 6 (Graph 4); 3,5—Robust SLP (22) with
a � 0:3; anda � 5 (Graph 5).

Fig. 2. Minimax (support vector) regression: 1—the standard regression,
2—the minimax SLP predictor fora � 10; A, B, C—supporting vectors.



q (s) increases enormously withusu. An example

w�s� � exp�as2�2 1: �22�

A relative contribution of each learning vector into the
sum (20) is determined by a scaling coefficienta and the
distance uyi 2 �w 0xi 1 w0�u: Learning vectors with small
deviationsuyi 2 �w 0xi 1 w0�u have zero or very small contri-
bution into the cost function. In a limit, wherea is large, and
the training process finishes, only a small number of the
most distant vectors contribute into the cost function. There-
fore, only a small number of training vectors determine the
values of the regression coefficients. We refer these vectors
assupporting ones. In Fig. 2, we demonstrate a utilization
the SLP to obtain the minimax (support vector) regression.
In this example, the variablex is Gaussian, positive devia-
tionsj of variabley� x 1 j are distributed uniformly in the
interval (0,0.5), while negative deviations appear in the
interval (24,0). Only three training vectors (A, B, and C)
serve as the supporting vectors. We see a notable difference
between the standard and minimax regressions.

In order to find the maximal deviationsuyi 2 �w 0xi 1 w0�u
exactly we need to use largea values. Two numerical
problems arise. First of all, largea values cause many
local minima of the cost function to appear in the multi-
variate weight space. In addition, for largea , the conver-
gence of the algorithm becomes unstable. One needs
significant effort in order to choose the proper learning-
step value. Our experiments have shown that a good strategy
is to increasea with any increase in the number of
iterations.

4. The generalization error

In order to obtain an explicit formula for an expected
square prediction error E1 2 � E�y 2 ypred�2 of the first
four linear predictors obtained in the linear SLP back propa-
gation training we assume

y� X 0wp 1 wp
0 1 j; �23�

wherew p � �wp
1;w

p
2;…;wp

p� 0; wp
0 are true weight values,X

is a random Gaussian N(0, S ) vector, andj is independent
zero Gaussian N�0;s 2� noise. Moreover, in order to
simplify the analysis assume�y� 0 and �X � 0: Then for
the linear models we havêw0 � 0:

4.1. Standard regression

For model (23), the weight vector

ŵSTAND � 1
N

X
j

X 0j

0@ 1A21
1
N

X
j

X jyj ;

can be rewritten in a following way:

ŵ � 1
N

X
j

X jX
0
j

0@ 1A21
1
N

X
j

X j�X 0 jwp 1 j j�
0@ 1A

� w p 1
1
N

X
j

X jX
0
j

0@ 1A21
1
N

X
j

X jj j

0@ 1A: �24�

Then for vector�y;X 0� 0 the prediction error

ypred 2 y� X 0ŵ 2 X 0w p
2 j � X 0�ŵ 2 w p�2 j

� X 0
1
N

X
j

X jX j
0

0@ 1A21
1
N

X
j

X jj j

0@ 1A2 j:

Taking into account that for independent learning-set
vectors

EXj � 0; E
1
N

X
j

X jyj � 0;

Ej ij j �
0 if j ± i

s 2 if j � i
;

(
and

E
1
N

X
j

X jX
0
j

0@ 1A21

� S
N

N 2 p 2 1
;

the expected square prediction error

E1 2
STANDARD

� E

(
X 0
 

1
N

X
j

X jX
0
j

!21 
1

N2

X
ij

X jj jj iX i

!

�
 

1
N

X
j

X jX
0
j

!21

X

)
1 Ej 2 � s 2

 
1 1

p
N 2 p 2 1

!
:

�25�
The result does not depend onS . Expression (25) was firstly
obtained by Davisson (1965).

4.2. Primitive regression

The weight vector

ŵ PRIM � 1
N

X
j

X jyj � 1
N

X
j

X j�X 0 jwp 1 j j�
0@ 1A

� SXXw p 1 SXj;

where

SXX � 1
N

X
j

X jX
0
j ; SXj � 1

N

X
j

X jj j :
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The prediction error

ypred 2 y� X 0ŵ PRIM
2 X 0wp

2 j

� X 0�SXXw p 1 SXj�2 X 0w p
2 j

� X 0�SXX 2 I �w p 2 X 0wp
2 j:

Then the expected square prediction error

E1 2 � E tr{wp�SXX 2 I �XX 0�SXX 2 I �w 0p 1 SXjS
0
xjXX 0}

1 Ej 2
:

By means of standard methods of multivariate statistical
analysis, and after some simple but tedious algebra, we
derive

E12
PRIMITIVE � s 2 1 TA 1 TB; �26�

where

TA � w 0Fp�D 2 I �2wp
F;

TB � 1
N
s 2{tr �D2�1 w 0Fp�D2 1 tr�D2�I �wp

F} ;

D is thep × p diagonal matrix composed from eigenvalues
of S , such thatGSG 0 � D; G is the orthonormal eigenvector
matrix ofS , and

w p
F � D1=2Gw p � �w1 � w2 �…� wp� 0:
To obtain Eq. (26) we had to prove the following three

equalities:

E
X

i

UiU
0
i

 !
D2

X
i

UiU
0
i

 !( )
� N tr�D2�I 1 N�N 1 1�D2

;

tr�Sw 0 pwp� � tr�wp
Fw 0Fp�;

and

tr�S 2wpwp 0 � � tr�Dwp
Fw 0Fp� � w 0FpDwp

F;

where U1;U2;…;UN are independent random Gaussian
N(0,I ) vectors.

The expression (26) shows the prediction generalization
error is composed from three terms:

• s 2—a term which characterizes the variance of noise in
the model (23)—this term is fixed and does not depend
on the learning-set size;

• TA � w 0F p�D 2 I �2wp
F indicates the price we pay for

ignoring estimateSXX � �1=N�
P

j xjx
0
j of the covariance

matrix S xx (in the standard regression we do not ignore
SXX, and do not have this term). The termTA is non-
negative. IfS � I ; we haveD � I : thenTA � 0;

• TB � �1=N�s 2{tr �D2�1 w 0Fp�D2 1 tr�D2�I �wp
F} ; indi-

cates the influence of the learning-set size. Contrary to
the generalization error expression for the standard
regression (25), this term depends both on the covariance

matrix S , and on the optimal weight vectorwp. If the
covariance matrix S � I ; this term becomes
�1=N�s 2�p 1 2w 0pwp�:
Let r be a multiple correlation coefficient. It is easy to

find

w 0pwp � s 2r2

1 2 r2 :

Then

TB � 1
N
s 2 p 1 2

s 2r2

1 2 r2

 !
:

We see that the sensitivity of primitive regression to the
learning-set size depends of the true multiple correlation
coefficient. For standard regression, we had an analogous
term

TStand
B � s 2 2

p
N 2 p 2 1

;

which does not depend on the multiple correlation coeffi-
cient.

In the small learning-set size case, when dimensionalityp
of the vectorX is close toN, the termTStand

B is higher than
the term TB. For large N, however, the termTStand

B can
become lower thanTB. In the small learning-set size case,
this means that primitive regression can outperform stan-
dard regression. Here we can conclude that in such case, it is
not worth training the perceptron for many iterations. On the
contrary, in situations where primitive regression loses
against standard regression, i.e. in the large learning-set
size case, it is worth training the perceprton for many
iterations.

In situations withS ± I ; the difference between standard
and primitive regression can become particularly large. In
this case,

w 0F pwp
F � w 0pSw p � s 2r2

1 2 r2 :

In order to observe an influence ofS andw p
F on the general-

ization error let us analyze a model with the following
constraintson eigenvalues of the covariance matrixS and
on components of the vectorw p

F:

d1 � 1; d2…� dp � kd;

w1 � sr������������������������������1 2 r 2��1 1 �p 2 1�k2
w

p ;

w2 � w3 �…� wp � w1kw:

This model is determined by two parameterskd , and kw.
Results of numerical calculations performed forp� 50;
r � 0:9; andN � 60 are presented in Tables 1 and 2.

Consider two particular cases:

A. A model where the largest eigenvalue (d1) of the
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covariance matrixS is much larger than the other ones,
and when the first component (w1) of the weight vector
w p

F (in the direction of the largest eigenvalue ofS ) is
much larger than the other ones (e.g. a case A1:kd �
0:001; andkw � 0:1�: Then we have at most a small
bias (0.55). In the small learning-set case, primitive
regression� ���������������

E1 2
PRIMITIVE

p � 1:59� outperforms the stan-
dard one dramatically (forp� 50; N � 60 we have���������������

E1 2
STANDARD

p � 2:56�:
B. Models of the data where primitive regression
performs badly (large eigenvaluesd2;…; dp and large
weightsw2;…;wp�: For example, forkd � 1000 andkw �
1; (a case B1), we have � ���������������

E1 2
PRIMITIVE

p �
290:9; and

���������������
E12

STANDARD

p � 2:56: This theoretical analy-
sis can unveil situations where primitive regression
performs well. In such cases (e.g. cases wherekd; kw

andN are small), is worth training perceptron only for a
small number of iterations. Eqs. (25) and (26), however
indicate that with an increase in the learning-set size, the
situation can differ. E.g. forN � 300 for the case A1
we have

���������������
E12

STANDARD

p � 1:10; though,
���������������
E1 2

PRIMITIVE

p �
1:56:

In Fig. 3a and b, we presentsimulation results with the
linear single-layer perceptron. Fig. 3a is obtained for data
model A1. ForN � 60 (Graph 1) while training the SLP
from zero initial weights withh � 1; after the first iteration
we obtained the generalization error 1.55. After 150,000
iterations, we obtained the generalization error 2.53. Both
values are very close to the theoretical expected values
1PRIMITIVE � 1:59; and 1STANDARD � 2:56: For N � 300
(Graph 2), after the first iteration we have 1.55, and after
2000 iterations 1.10, very close to 1.56 and 1.10, the theo-
retical values for primitive and standard regressions. We
see, for such type of data primitive regression is useful.
Table 2 shows that particularly high effectiveness of the
primitive regression (a brief training) comes to light if
data with kw � 0:001 andkd � 0:001 is used. Then after

the first iteration, we should obtain the generalization
error 1.08, and an essentially higher error (2.56) at the end
of the training process. This means that after the first itera-
tion we have �2:562 1�=�1:082 1� < 20 times smaller
increase in the generalization error than at the end—a
tremendous overtraining! Smallkd is characteristic of data
with small intrinsic dimensionality (the dimensionality of
the subspace where data pointsX1; X2; X3;…are situated).
Table 2 shows that for smallkd (low intrinsic dimensional-
ity) we have the lowest increase in generalization error. It
agrees with a similar conclusion obtained for an analogous
classification algorithm—the Euclidan distance classifier
(see e.g. Raudys, 1967, 1998b)—in both algorithms, the
Euclidean distance classifier and primitive regression, only
sample means are used to find the weights of the algorithms.

Table 2 shows that there also exist situations where primi-
tive regression and brief training of the SLP is not a good
choice. For example, for the data model B withkw � 1 and
kd � 1000 (a high intrinsic dimensionality case) andN �
60 from Table 2, we find1PRIMITIVE � 290:9—a very high
generalization error, considerably higher than the error of a
untrained SLP with weight vectorw � 0: Training with
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Table 1
The bias term in Eq. (26)

����
TA
p

for differentkw andkd �p� 50; r � 0:9�

kw\kd 0.001 1 1000

0.001 0.0001 0 (no bias) 0.75
0.1 0.55 (case A1) 0 (no bias) 116.2
1.0 1.27 0 (no bias) 201.4 (case B1)
1000 1.29 0 (no bias) 203.4

Table 2
The generalization error

�����������
E2
1PRIMITIVE

q
�p� 50; r � 0:9;N � 60�

kw\kd 0.001 1 1000

0.001 1.08 2.34 207.3
0.1 1.59 (case A1) 2.34 238.7
1.0 2.29 2.34 290.9 (case B1)
1000 2.31 2.34 292.4

Fig. 3. Generalization error of linear SLP as a function of the number of
iterations: (a) data A: 1—N � 60; 2—N � 300; (b) data B: 1N � 60; 2—
N � 300.



h � 1 leads to1gen� 273 after the first iteration, and to a
divergence of the back propagation algorithm later. Use of
much smaller learning steph � 0:001 results in curve 1 in
Fig. 3b with 1gen� 2:75 after 4000 iterations (recall, for
standard regression the expected prediction error
1STANDARD � 2:56�: For learning-set sizeN � 300 theory
states1SPRIMITIVE � 223; and1STANDARD � 1:10: BP train-
ing of the SLP withh � 1 after the first iteration resulted in
1gen� 229; and further divergence of BP training. For small
learning-step�h � 0:01� we have no divergence: after the
first iteration we obtained a much smaller generalization
error, 1gen� 1:34; and after 400 iterations,1gen� 1:09:
For this type of the data, experiment confirms the theoretical
conclusion: the SLP should be trained until the end: no early
stopping is necessary.

Two conclusions follow:

—for the high-dimensional Gaussian data the starting
(after the first iteration) and the final generalization errors
of the linear SLP can be predicted with fairly high
accuracy,
—the learning-steps value is an important tool to
control convergence and the generalization error of the
perceptron.

4.3. Regularized regression

The weight vector

ŵRR � 1
N

X
j

X jX
0
j 1 Il

0@ 1A21
1
N

X
j

X jyj

� �SXX 1 Il�21�SXXwp 1 SXj�:
Use of an expansion�SXX 1 Il�21 � S21

XX 2 lS22
XX 1 …and

rejecting terms of orderl 2 and higher, for very smalll we
can write:

• the prediction error

ypred 2 y� X 0ŵRR
2 X 0wp

2 j

� X 0�SXX 1 Il�21�SXXwp 1 SXj�2 X 0w p
2 j

� 2lX 0S21
XX wp 1 X 0S21

XXSXj 2 lS22
XX SXj 2 j;

• and the expected square prediction error

E1 2 � E tr{�S21
XXSXjS

0
XjS

21
XX 2 2lS21

XXSXjS
0
XjS

22
XX�XX 0}

1Ej 2 � s 2 1
1
N
s 2 tr E{tr �S21

XXS�2 2lS22
XXS}

� s 2{1 1
1
N
�tr ES21

I 2 2lES22
I D21�} ;

whereD is a diagonal matrix composed from eigenvalues

of the true covariance matrixS , SI � D21=2G 0SXXGD
21=2

(it is a random Wishart W(N,I ) matrix).
G is the eigenvector matrix ofS , in singular value repre-

sentationS � GDG 0; and
It is known (see e.g. Raudys, 1972) that

ES21
XX � I

N
N 2 p 2 1

; and

ES22
XX � I

N2�N 2 1�
�N 2 p��N 2 p 2 1��N 2 p 2 3� :

Therefore

E12
RR

� s 2

 
1 1

p
N 2 p 2 1

2 2l
tr�D21�N�N 2 1�

�N 2 p��N 2 p 2 1��N 2 p 2 3�

!

� E12
STANDARD 1 Tl; (27)

where

Tl � 22ls 2 tr�D21�N�N 2 1�
�N 2 p��N 2 p 2 1��N 2 p 2 3� :

Eq. (27) indicates that generalization error depends onl ,
and parameter tr�D21� of the distribution density function of
X. The termTl tries to reduce the cost we need to pay to
estimate the covariance matrixSXX. The simulation experi-
ments reported in Section 4.2 confirm that while training the
SLP and moving from primitive regression towards the stan-
dard one we have smaller generalization error. This is a
consequence of the influence of the third term in Eq. (27).

4.4. Standard regression with the pseudoinversion of the
covariance matrix

The weight vector

ŵPINV � T
d21 0

0 0

" #
1
N

X
j

T 0X j�X 0 jTT 0wp
1 j j�

� T
wT1

0

 !
1

1
N

X
i

d 21U1ij i

0

0B@
1CA

264
375;

wherew1i, U1i are composed from the firstr components of
vectors

wT � T 0w p �
wT1

wT2

 !
;

Ui � T 0X i �
U1

U2

 !
;
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respectively, andT � ��tis�� and

d �

d1 0 … 0

0 d2 … 0

… … … …

0 0 … dr

0BBBBBB@

1CCCCCCA
has been defined in Section 3.4. To prove the above repre-
sentation, we have used the representation

T 0
1
N

X
j

X jX
0
j T � 1

N

X
j

UjU
0
j �

d 0

0 0

" #
:

Then the prediction error for vector� y; X 0� 0

ypred 2 y� X 0ŵPINV
2 X 0wp

2 j

� U 01
1
N

X
j

d 21U1jj j

0@ 1A2 U
0
2wT2 2 j;

and the expected square prediction error

E1 2 � E tr
1

N2

X
ij

d21U1ij ij jU
0
1jd

21

0@ 1AU1U 01}

1 E tr�wT2w 0T2U2U 02�1 Ej 2
:

In order to obtain a simple and easy to analyze formula
for the prediction error, assumeX , N�0; I p�: Consequently
U � T 0X , N�0; I �; and

E12
PINV � s 2 1 TA 1 TB; �28�

where

TA � s 2 1
N

E
X

j

d21
j ;

TB � s 2 1
N

X
ij

wiwjE
X

s

tsi tsj :

Eq. (28) indicates that the generalization error depends on
componentsw1;w2;…;wp of the models weight vectorwp

:

Let us considertwo extreme cases:

(a) all components of vectorX are equally correlated with
y, and
(b) only one (say, the first) component ofX is correlated
with y.

Let the coefficient of multiple correlation for model (23)
be equal tor . Then for case (a)

w1 � w2 �…� wp � sr=
������������
p�1 2 r

2�
q

;

and for case (b)

w1 � sr=
������������
p�1 2 r 2�

q
;w2 �…� wp � 0:

WhenN , p the eigenvector matrixT becomes a random
matrix. From the orthonormality condition�TT 0 � I � for
largep, we have

E
X

s

tsitsj �
1=p if j � i

0 if j ± i

(
:

Consequently, for both cases (a) and (b)

TB � s 2 1
N

X
ij

wiwj E
X

s

tsitsj � s 2 1
N

r2s 2

�1 2 r2� :

The term TA � s 2�1=N�EPj d21
j characterizes eigen-

values of the singular randomSXX matrix, having Wishart
W�N; Ip� distribution, and can be evaluated by numerical
methods. In Table 3 we present several values of Eig (N, p)
found forp� 20:

We see that the expected values E
P

j d21
j increase withN

exponentially. We can use these values to calculate theore-
tical estimates of the generalization error of the standard
regression whenN , p

E12
PINV � s 2 1 s 2 1

N
ES21

dj
1 s 2 1

N
r2

�1 2 r
2� 1 2

N
p

� �
:

�29�
The expression (29) for the generalization error is composed
from three terms:

• s 2—a term which characterizes the variance of noise in
the model (23), an asymptotic (minimal, ideal) prediction
error;

• s 2�1=N�ES21
dj

increases withN (whenN , p);

• s 2 1
N

r
2

�1 2 r
2� 1 2

N
p

� �
decreases withN:

Numerical analysis of Eq. (29) shows that with increase
in the learning-set sizeN, from 1 up top, the generalization
error decreases at first, comes to a minimum, and begins to
increase whenN approachesp (theoretically until infinity).
This agrees with conclusions obtained earlier from the
statistical mechanics approach (see e.g. Bo¨s, 1996; Krogh
& Hertz, 1992) and that obtained for the classification task
(Raudys, 1998b; Raudys & Duin, 1998). WhenN . p; we
have standard regression where the generalization error
declines monotonically with increase in the learning-set
size N (Eq. (25)). In Section 3.4, we demonstrated that in
the large learning-set case (whenN . p� back propagation
training of a linear SLP leads to standard regression and
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Table 3
Expected values E

P
j d21

j of the sum of inverse eigenvalues of the Wishart
W(N, Ip) random matrix forp� 20

N 2 4 6 8 10 12 14 16 18

E
P

d21
j 0.24 1.08 2.73 5.78 11.2 20.7 38.2 87.6 274



whenN , p to standard regression with the pseudo-inverse.
Therefore, one can expect a similar peaking behavior of the
fully trained linear SLP used as the predictor. The peaking
behavior, however, can be abolished if we stop the training
process optimally. In Section 2 we have shown that early
stopping prevents us from obtaining standard regression and
forces the perceptron to act as regularized regression acts
(recall that in regularized regressionwe add positive values
l to all eigenvalues of the sample covariance matrixSXX).
Simulation experiments show that in very small sample
cases, regularized regression is a better strategy than stan-
dard regression with pseudo-inversion wherewe ignore
directionscorresponding to zero eigenvalues.

In Fig. 4, we present theoretical (1) and experimental (2, 3
and 4) graphs of dependence of the generalization error on
the number of learning examplesN: Graph 2 corresponds to

the standard regression with pseudo-inversion, Graph 3 to
SLP aftertmax� 2000 iterations�tmax� 10; 000 whenN .
p�; and Graph 4 to optimally stopped SLP�w�0� � 0; batch
training; h � 0:1 whenN , p; andh � 0:3 whenN . p�:
Gaussian N(0,Ip) 20-variate data; all prediction variables
x1; x2…; xp are equally correlated withy; the coefficient of
the multiple correlationr � 0:9: For N , p; the theoretical
graph was calculated from Eq. (29), and forN . p from
(25). The empirical graphs are average values obtained
from 500 (whenN , p) or 50 (whenN . p� independent
experiments. We see, theoretical (1) and experimental (2)
graphs (for standard regression with pseudo-inversion of the
covariance matrix) are very close. The Graph 3 for the
exhaustively trained SLP resembles the graphs 1 and 2.
The optimally stopped SLP (Graph 4) performs at best.
All first three graphs exhibit the peaking behavior whenN
is close top, however, the optimally stopped perceptron (the
Graph 4) does not. It advocates once more that use of
pseudo-inversion is not the best choice in the regression
design process.

4.5. Robust regression

No theoretical results are available in the literature. To
explain principal tendencies in the small learning-set beha-
vior, we performed a number of simulation experiments. In
Section 3.5, we demonstrated a simple example where
robust regressions outperforms the standard one if the data
is contaminated by a noise (Fig. 1). Standard regression is
appropriate for multivariate Gaussian data. In comparison
with standard regression, in robust regression most distant
observation vectors have less weighty contributions while
determining the weights of the linear regression equation.
Therefore, for Gaussian data use of robust regression can
lead to an increase in the prediction generalization error. As
a typical example in Fig. 5, we present learning curves1 �
f �t� of standard and robust SLP regression trained with the
cost function (20) anda � 3: We used 50-variate Gaussian
data; all p variablesx1; x2…; xp were equally correlated
among themselves�r � 0:3�; before training the percep-
trons the data was normalized by subtracting a sample
mean vector and dividing all variables by their standard
deviations; the learning-set sizeN � 60; the learning rate
h � 0:001: Curves 1 and 2 correspond to generalization and
training-set errors of robust SLP, and curve 3 to the general-
ization error of the standard linear SLP. Straight lines 4 and
5 correspond to the generalization and training-set errors
�sgen� 0:481; s training� 0:111� of the standard regression.
The minimal generalization error of the standard
SLP �sgen� 0:324� is lower than the minimal value of the
generalization error of the robust SLP�sgen� 0:377�: For
scalinga � 10 the robust SLP results in much higher error
�sgen� 1:2�: For a � 0:1; however, the cost function of
robust regression is actually the quadratic function. Thus,
for a � 0:1 we havesgen� 0:324; i.e. the same value as
with standard regression.
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Fig. 4. Generalization of the standard regression (with the pseudoinversion
of the covariance matrix, ifN , p� : 1—theory, 2—experiment, 3—SLP
after 2000 (ifN , p�; or 10,000 (ifN . p� iterations, 4—optimally stopped
SLP.

Fig. 5. Generalization of robust regression. 1, 2—robust SLP (test-set and
training-set); 3—standard linear SLP (test-set); 4,5—standard regression
(test-set and training-set).



The experimental studies demonstrated a preference of
the cost functions (20) and (21) over the cost (18) and
(19). In Gaussian cases, utilization of the robust cost func-
tion in the SLP training results in no gain. In both, Gaussian
and non-Gaussian cases, the generalization error of the
linear SLP perceptron with optimally chosena and t is
lower than that for standard regression. Here the regularized
and robust regressions act together. Thus, we obtaina robust
regularized regression. To obtain the best results we need to
choose both the optimal number of iterationst and the non-
linearity parametera . The value of the learning-steph also
is an important parameter. In order to obtain fast conver-
gence, the parameterh should depend ona .

The priority of robust regression unveils only in non-
Gaussian cases with atypical observations. As a character-
istic example, we can mention a stock market closing index
prediction task. The learning set was composed from 500
25-variate observation vectors and had a number of atypical
observations. Standard regression resulted in the test-set
prediction error 1STAND � 0:257: Use of the optimally
stopped linear SLP (optimal regularized regression) applied

to normalized data (see Section 5.3) resulted in a little bit
better prediction error:1SLP� 0:223: Robust regression
with cost functions (20) and (21)) resulted in1ROBUST�
0:242 (for a � 0:6�; 1ROBUST� 0:125 (for a � 17�; and
1ROBUST� 0:126 (fora � 20�: Hence, selection of optimal
values ofa and t allowed the gereralization error to be
reduced 2.05 times (in comparison with the standard regres-
sion), and in all experiments we present generalization error
values of optimally stopped SLP.

In Section 4.1, we showed that in the low intrinsic dimen-
sionality case, the generalization error of primitive regres-
sion can become very low. Regularized regression is an
intermediate case between standard and primitive regres-
sions. The generalization error of the regularized regression
also can be adequately low. In the optimized robust percep-
tron, we have regularized robust regression. This means that
in the low intrinsic dimensionality cases, the SLP robust
regularized regression can have good small learning set
size properties too.

4.6. Minimax (support vector) regression

No theoretical results are available in the literature here
either. In standard regression, we minimize the mean square
error. In minimax adaptive regression, we minimize the
distances from the prediction hyperplane to the farthest
learning-set vectors. This distance diminishes during the
training. The maximal distance between the test-set vectors
and the hyperplane (generalization), however, exhibits over-
training behavior: it diminishes at first, reaches a minimum
and then begins to increase. The mean square errors, both in
training and in testing, typically exhibit overtraining. The
overtraining, however, there occurs earlier.

For a rough evaluation of relations between the general-
ization error, dimensionalityp, and the learning-set sizeN,
we performed a number of simulation experiments with
Gaussian and non-Gaussian data. We found that an increase
in the generalization error mainly depends on the ratioN=p;
as predicted by theory for the linear regression models. For
example, for data model (23) with auniform random noisej
in the interval (20.25,10.25), fors �

�����
Ej 2

p
� 0:1445; and

according to Eq. (25) the generalization error of the standard
sum of squares regressionsgen < 0:37 whenN � 1:2p: In
50 repetitions of the experiments, we obtained approxi-
mately the same values ofsgen for all four dimensionalities
of the feature space� p� 10;20;30; and 50� tested:
sPRED < 0:38 for standard regression,sgen < 0:19 for opti-
mally stopped minimax SLP, andsgen < 0:23 for minimax
SLP after 1000 iterations witha � 5; and h � 0:5: In a
further increase in the number of iterations, the generaliza-
tion error gradually approached 0.38, the generalization
error of the standard regression. The non-linear character
of the cost function (20), however, often oppress this
process, and we need tremendous numbers of iterations in
order to become close to standard regression. Fortunately,
the best generalization is obtained much earlier.
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Fig. 6. The minimax regression. (a) The maximal distancedmaxas a function
of the number of iterations: 1—training-set, 2—test-set. (b) The standard
deviation as a function of the number of iterationst: 1s—training-set, 2s—
test; 3—standard linear SLP test-set.



For multivariateGaussianand evennon-Gaussian data,
typically the generalization mean square error of the mini-
max adaptive regression is higher than that of the standard
optimally stopped SLP. Data models where the intrinsic
dimensionality of the data is very low and noisej in the
data model (23) isuniformly distributed constitute excep-
tions. In such cases, the generalization error of the optimally
stopped minimax SLP regression is frequently somewhat
lower than that of the standard optimally stopped SLP.

In Figs. 6a, b and 7 we present such anon-typical exam-
ple. In this example, the intrinsic dimensionality of 49-
variate vectorX is practically equal to 1: all components
of vectorX are equally correlated�r � 0:3�; maximal devia-
tions ofX in directions of 48 eigenvalues ofX are 0.0005;
and the last eigenvalue is equal to 1; noisej in the model
(23) is uniform in the interval (20.25,10.25). In Fig. 6a, we
depict the dependence of the maximal distance between the
training set vectors and the prediction hyperplane (curve 1)
and between the test-set vectors and the hyperplane (curve 2)
on the number of iterations. We see that the training distance
diminishes constantly, while the testing distance exhibits
peaking behavior. Fig. 6b shows the mean square deviations
as functions of the number of iterations: 1s, the training-set
error; 2s, the test-set error and 3, the test-set error of the
standard linear SLP perceptron. All three curves peak. In
this low intrinsic dimensionality case, nevertheless, adap-
tive minimax regression outperforms standard adaptive
regression according to the minimal distance and the
mean square deviation.

This experiment (non-typical), however, indicates that
there is no need to train the perceptron until the support
vector regression is obtained. In other experiments
performed with non-uniform noise and especially in experi-
ments with higher intrinsic dimensional data, the necessity
to stop training the minimax SLP earlier is much more
obvious. Fig. 7 shows contributions of sixty 50-variate train-
ing-set vectors (training data) to the cost function after 5000

iterations. In this experiment 5000 iterations correspond to
overtrained perceptron. We see five learning-set vectors (A,
B, C D and E) contribute at most to the cost function value,
however the remaining vectors (15 at least) also have nota-
ble influence. A more general conclusion obtained from this
and other experiments, is that in spite of the fact that we are
rather far away from the support vector regression, the
maximal distance and the minimal mean square error
amongthe test-set vectorsare obtained substantially earlier.

To obtain the support vector classifier while training the
non-linear SLP, we need to have no classification errors
among the learning-set vectors, to use limit target values
�t1 � 0 and t2 � 1 for the sigmoid activation function
f �c� � 1=�1 1 exp�2c�� �; and gradually increase the learn-
ing-steph with an increase in the number of BP iterations
(Raudys, 1998a). In regression, however, we need to use a
special pattern error function (Eq. (22) for example) and
gradually increase the scaling parametera with an increase
in the number of BP iterations. Simulation experiments
show that in both tasks, classification and regression,
convergence to the support vector machine is slow. In
both tasks, nevertheless, the best generalization is obtained
far earlier before the support vector machine is obtained.

5. Complexity control

5.1. A necessity

We have shown that while training a SLP, we can obtain
six different types of regression, which should be used in
different circumstances. When we have the multivariate
Gaussian data with low intrinsic dimensionality, the primi-
tive regression or briefly trained linear SLP can become
very useful. For certain distributions of the components of
the weight vector and eigenvalues of the covariance matrix
of the vector X, however, the primitive regression can
perform very poorly. For such types of data in the large
learning-set case�N . 2p�; we need to use standard regres-
sion, i.e. to use the linear SLP and train it almost until the
end. If the learning-set size is small, we need to use regular-
ized regression, i.e. to stop training earlier. When the data is
contaminated by noise and we have a great percentage of
atypical observations, outliers, the robust regression is
preferable over all other types of the regression rules. In
such cases, we need to use a non-linear SLP with cost func-
tions (18) or (20) and (21). In some cases, the maximal
accuracy prediction is of the minimax regression (SLP
with pattern error function (22) as discussed in Section 3.6).

5.2. Tools

Which tools can be used to control the result obtained?
First of all is thenumber of iterationsin the gradient (BP)
training algorithm. Use of second-order optimization
methods such as the Newton algorithm can lead to the stan-
dard regression in one single learning iteration. In such
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Fig. 7. ContributionsC of 60 learning-vectors to the cost function after
5000 iterations.



cases, we fail to obtain regularized regression. This explains
why simple gradient training methods often outperform
more sophisticated second-order methods.

The value of thelearning-steph also provides a very
important tool, which affects the result. Typically the learn-
ing-step controls the speed of the learning process. Too
small values ofh make the training very slow, while too
large ones can lead to local minima and/or to the divergence
of the algorithm. It is known (see e.g. Amari, 1967) that the
value of the learning-step controls the variance of the final
weight vector. According to this theory, in order to find the
minimum of the cost function, the learning-step should
diminish with the increase in the number of iterations. It
is absolutely true only in the linear SLP training. Here the
cost function does not change with an increase in the
number of iterations. In the non-linear SLP, the cost func-
tion changes and one has to control the magnitude of the
learning step with any increase in the number of iterations.
One more remark concerning the learning-steph : in the
non-linear SLP, overly large values ofh can saturate the
cost function and stop further training at all. In order to
obtain primitive regression in one single iteration, we
need to useh � 1: We can decrease this value in further
training. For some data models, however, we need to choose
a very small learning-step value just for the first iteration
(see the simulation experiments mentioned at the very end
of the Section 4.2).

The types ofactivation and cost functionsare of great
importance too, and allow one to choose between linear
and non-linear perceptrons, and obtain robust and/or mini-
max regressions with different properties. We have
discussed these properties above, in Section 3. There,
the values of the scaling parameter,a , play a very impor-
tant role. Small values of these parameters move the cost
functions (18) and/or (20) and (21) to the standard sum of
squares cost and to the linear SLP, while in the large-
learning-set case�N . 2p�; large values ofa control the
degree of ignored distant observations. In minimax regres-
sion, the parametera controls the proportion of the most
distant observations, which contribute to the final position
of the regression equation. Consequently, the optimala
values should be chosen in dependence with the structure
of the data.

Besides the standard cost function of the type (1), an
additional regularization term can be added (Hinton,
1987). Addition of the simple weight decay term
1lRw 0w has a regularization effect: it can be shown
that lR plays the role of terml in the regularized regres-
sion discussed in Sections 2.3 and 3.3 (see also Sjoberg &
Ljung, 1992). Large weights can help to obtain the mini-
max (support vector) regression easier. Then we can use
the regularization term1lR(w 0w 2 h2)2, where parameter
h controls the magnitudes of the weights. Selection of an
optimal set of training parameters and a way to control
the training process constitute the topic of the next few
sections.

5.3. Data complexity control

A very important tool, which can help to control the type
of regression obtained in adaptive training isweight initia-
lization. A successful initialization yields smaller general-
ization errors and permits this to be obtained faster (Raudys
& Amari, 1998). We have seen that the transit of the coor-
dinate center into the sample mean of the learning data set
helps one to obtain the primitive regression in one iteration.
In some situations, this type of regression is the best choice
(Section 4.2). Therefore, in such situations, the weight
vector after the very first iteration can become a very
good starting position for further training.

Moreover, for many models of the data and configura-
tions of the components of the ideal weight vectorwp primi-
tive regression requires fewer training vectors than the more
complex standard regression (Sections 4.1 and 4.2). For
some configurations, the difference can be very large. Itera-
tive BP training of the single layer perceptron becomes very
slow when variances of vectorX are different in various
directions, i.e. when the eigenvalues of the covariance
matrix S are essentially different (Le Cun, Kanter &
Solla, 1991).

The above arguments advocate that it would be desirable,
prior to training the perceptron, to transform the data in such
a way that to have the spherical Gaussian distribution of
vector X. We can try to do this by transforming the data
by means of rotation and scaling:

Xnew� D 21=2T 0X;

where D and T are p × p diagonal eigenvalue andp × p
eigenvectors matrix of the covariance matrixS . Instead of
S , we can use the sample covariance matrixSXX. Then the
learning-set covariance matrix ofXnew will be an identity
matrix I . After the first learning iteration in the transformed
space we obtain (Xnew)

0ŵ PRIM � X 0 S21
XXSXy; i.e. we have

standard regression (4) in the original (X) space (Section
3.1, Eq. (12)).

In the singular value decompositionTSXXT 0 � D; instead
of the standard maximum likelihood estimateSXX �
�1=N�Pj X jX j one can use some additional information
concerning the structure of the covariance matrixS . For
example, use of an assumption that components of vector
X are realizations of a stationary Gaussian autoregressive
process of orderh, leads to aconstrained estimate of the
covariance matrixand reduces the number of parameters to
be estimated from the learning data fromp� p 1 1�=2 toh. In
the case, when assumptions concerning the structure of the
covariance matrixS are approximately correct, in subse-
quent training of the SLP, one can obtain a significant
gain (see e.g. experimental results obtained for the classifi-
cation task in Raudys & Saudargiene, 1998). Much smaller
generalization errors also can be obtained if instead of the
standard maximum likelihood estimateSXX, we use the regu-
larized sample estimate of the covariance matrix (Raudys,
2000). Utilization of constrained estimates of the covariance
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matrix in order to perform the data transformationXnew�
D 21=2T 0X; is in fact an incorporation of additional statistical
information into the perceptron design. If, in addition to the
conventional learning-set, some more information is
available, possibly this information can be used to transform
the data in such a way that make the termsTA andTB in Eq.
(26) as small as possible. This is the subject of further
investigations.

5.4. Optimal complexity

In principle, one can use analytical formulae for the
expected prediction error E1prediction, to calculate this error
for the number of regression models, and then to choose the
best. An example has been presented at the end of Section
4.2. Unfortunately, a number of obstacles exist. First of all,
E1predictionis a mean value, and practically for each particular
learning-set, we have random deviations from the expected
(mean) values. Second, in order to use analytical formulae
we need to know several true parameters of the data model.
For example, for the primitive regression these are the
components of the optimal weight vector and the eigenva-
lues. Sample estimates of these parameters are not exact
and, no doubt, result in random errors while calculating
E1prediction. Third, the true data model, as a rule, is unknown.
Use of the simplified multivariate models, such as the multi-
variate Gaussian distribution, causes additional bias errors.
And, last, for a majority of real world data models analytical
equations are not derived (e.g. the robust and minimax
regression, or the standard, primitive regressions for non-
Gaussian data models) either are only approximate (e.g. Eq.
(27) for the regularized regression is valid only for very
small l ). Therefore, a purely analytical route to the best
model choice is impractical.

A standard practical way ofmodel choicein statistical
inference iscross validation. There, one splits the design-
set vectors into two parts. One part is used fortraining and
the second one forvalidation (testing). In order to use the
design-set vectors more economically sometimes one uses a
rotation method: there one splits the design-set intok parts
and usesk 2 1 parts of the data for training, and the remain-
ing one part for testing. This procedure is repeatedk times,
and an average generalization error value of allk experi-
ments is used to select the best model. One more method is
thebootstrapmethod (Efron, 1979). There, in order to esti-
mate the bias of the apparent (learning-set, or resubstitution)
prediction error the following computer intensive procedure
is used. FromN design-set vectors, one forms a random
bootstrap learning-set composed fromN randomly chosen
vectors. The model is tested twice: (a) on the bootstrap
learning-set, and (b) on allN original design-set vectors.
The procedure is repeatedk times. The mean valueDboot

of the difference between the two estimates (a and b) is
estimated overk runs of the experiment. The difference
Dboot is used to estimate a bias of the resubstitution
(learning-sets) error estimate. In principle, this computer-

intensive method can be applied to choose the best type of
regression in the SLP training.

One more possibility to form a pseudo-validation-set is a
noise injection. The injection of the Gaussian spherical
noise N(0,Il ) asymptotically (when a number of the noise
injections tends to infinity) is equivalent to usage of
regularized regression, where we add componentIl to the
sample estimate of the covariance matrix. Therefore
Gaussian spherical noise N(0,Il ) injection can not be
used for a correct non-biased model choice. To improve
statistical classifiers and neural networks Duin (1993)
suggested injectingk-NN directed noise. In his proposal,
for each learning-vectorxj, one injects noise in directions
of few nearest neighbors toxj. Skurichina and Duin (1997)
and Skurichina, Raudys and Duin (2000) suggest to usek �
2: Contrary to traditional regularized classification or
regression, this approach introduces new information
concerning the local structure of the data, what is different
from assumptions used to construct a regularized regression.
Therefore, in some circumstances, thek-NN directed noise
injection can be used to form an additional validation-set for
the model choice. This problem deserves further analysis.

6. Concluding remarks

If appropriately used, the theoretical findings concerning
the evolution in the single-layer perceptron training process
can become very useful. The main theoretical results
presented in this paper are the following:

1. While training the SLP we can obtain six different types
of the regression, starting from the simplest one in the
statistical sense, and going on to more complex ones.

2. The main tools, which can help to control the complexity
of the prediction rule are: the number of learning itera-
tions, the learning-step’s value control during the
iterative training process, the type of activation and
pattern error functions, as well as the scaling parameter
a value, which determines the shape of the pattern error
functions. The data transformation prior to training the
perceptron is a very important tool and can help to utilize
additional information about the structure of the data
presented in a form of a statistical hypothesis about the
structure of the covariance matrix.

3. The analytical formulae of the expected generalization
error derived for the linear SLP shows that the relation-
ship between generalization error and learning-set size
depends on the regression type, and on the data. The
relationship can depend on components of the vector
wp too. The intrinsic dimensionality of the data is of
great importance also. For certain configurations of
the data (low intrinsic dimensionality, special struc-
ture of the components of vectorwp), the perceptron
can be perfectly trained with very short learning
sequences.
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In order to train the SLP in the best way we recommend:

1. Before training, the single-layer perceptron to move the
coordinate center to the zero point.

2. To transform the data in order to have it approximately
spherical distributed data with unit variance of all
components of vectorXnew. We suggest to start training
from zero initial weight vector and for a short time to test
several learning-steps values. It is a way to integrate the
statistical and neural net approaches to design linear
prediction rules.

3. To analyze bi-variate scatter diagrams of some pairs of
components ofXnew, and if we see that the data is
obviously non-Gaussian, and/or contaminated by outliers
to choose the robust cost function with the cost functions
(20) and (21), and to train the perceptron with different
values of the scaling parametera . If there are no visible
outliers to use the standard sum of squares cost function
or use smalla . In the Appendix, we presentMatlab
code for robust regression (20) with (21).

4. To form the validation-set in one way or another. To use
this set in order to choose the optimal value ofa and the
optimal numbers of iterationst for each particulara
value.

The analysis performed explains particular theoretical
questions, however some important problems remain
unsolved. First of all, there are no theoretical formulae for
the generalization error of the robust and the minimax
regressions yet, as well as more exact non-asymptotic
expressions for regularized and standard regression with
pseudo-inversion in a general case (whenS ± I �: It would
be interesting to find out how to use additional information
in order to transform the data in such a way that the termsTA

andTB in Eq. (26) become small.
The single-layer perceptron and the back propagation

training are simplified mathematical models of complex
information processing processes, which take place in
Nature. In the BP training, we begin from the simplest in
the statistical sense models (the Euclidean distance classifier
or primitive regression) and gradually step-by-step move
towards more complex models (regularized and robust
procedures, the support vector machines). One may
guess that this is a natural way of development. During
the last few decades statisticians and engineers under-
stood that while designing the decision making algorithms
from experimental data one needs to move from simple
algorithms to complex ones. The artificial neuron does
this in a natural way. Statisticians required several
decades to develop a number of statistical classification
and regression rules: Fisher (1936) proposed his linear
discriminant function more than six decades ago, and
Vapnik his support vector machine (see Cortes & Vapnik,
1995) only recently. The neuron implements these algo-
rithms in a natural way. One may guess that this, the
Nature inspired, way of maturation is one of the most
successful ones.
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Appendix

% Find robust regression by
% the nonlinear single layer perceptron
% author Sarunas Raudys
%,raudys@das.mii.lt .
% A input N*p array - training-set
% Y target N*1 array- training-set
% At input Nt*p array - test-set
% Yt target Nt*1 array- test-set
% iter - number of iterations
% step - learning-step
% Wstart - 1*(p 1 1) starting weight
% vector
% alfa - scaling parameter
% W - 1*(p 1 1) final weight vector
% et - generalization error history in
% iter training iterations
% prior to training we recommend:
% - to substract from A,Y; At,Yt the sample
% means of A,Y;
% - to use Wstart � zeros(1,p 1 1);
% - whitening of a distribution of input
% vector can be useful
function [W,et] � robustpc
(A,Y,At,Yt,iter,step,Wstart,alfa)
[N, p] � size(A);
[Nt, pt] � size(At);
W�Wstart;
stepalfa � step/alfa;
AA� [A, ones(N,1)];
AAt � [At, ones(Nt,1)];
for i � 1:iter

dist � alfa*(Y 2 AA * W);
ind � find(abs(dist) , pi);
W�W1 stepalfa
* sin(dist(ind))*AA(ind,:);
dt � AAt*W 2 Yt;
et(i) � sqrt(dt*dt./Nt);

end
return
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Š. Raudys / Neural Networks 13 (2000) 507–523 523


