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Motivation 3

Doran in 1993 showed that every linear transformation can be represented as
a monomial of vectors in geometric algebra, every Lie algebra as a bivector
algebra, and every Lie group as a spin group.

Schwinger's realization of su(1, 1) Lie algebra with creation and annihilation
operators was de�ned with spatial reference in the Pauli matrix
representation [W. Pauli, 1927; J. Schwinger, 1945].

Several relations as well as connections were observed in spin particles such as
fermionic, bosonic, parastatistic Lie algebras, and in geometric algebras such
as the Cli�ord algebra, Grassmannian algebra and so on [G. Sobezyk, 2015 ].

Sobczyk proved that the spin half particles can be represented by geometric
algebras. [G. Sobezyk, 2015 ]

T.D. Palev in 1976 highlighted that a semi-simple Lie algebra can be
generated by the creation and annihilation operators. In all the above
mentioned works, the classical groups such as Bn and Dn play a crucial role in
the spin particle Lie algebra.
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Motivation 4

Moreover, several evidences from particle and theoretical physics showed the
connection between quantum spin particle Lie algebra and Cli�ord algebra
[Doran et al., 1993].

The spin of elementary particles obeying the Fermi-Dirac statistics, the
Bose-Einstein statistics, the quantization of parastatistics such as
parafermions and parabosons also gained much attention in the
literature[Pauli Jr, 1927; Biedenharn and J.Louck, 1981; Doran et al.;
Schwinger, 1945;Thankappan,1972 Sobezyk, 2015].

In the opposite, exhaustive investigations on spin particle creation and
annihilation and their angular momentum in connection with Lie groups, Lie
algebras, Cli�ord algebras, and their representations are still lacking. This
study aims at ful�lling this gap. The Iwasawa decomposition, introduced by
the Japanese mathematician Kenkichi Iwasawa, generalizes the Gram-Schmidt
orthogonality process in linear algebra[Holman III and Biedenharn Jr, 1966].
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Motivation 5

Motivated by all the above mentioned works, a natural questions arise:

1 Is spin in Mathematics the same as the spin in particle Physics?

2 If spin (n) is a double cover of SO (n) group, what is the cover of spin (2)
and what is also the cover for spin (1/2) are they both related?

3 Is it possible to construct the Iwasawa decomposition at both the Lie algebra
and Lie group levels of the spin particles ?

But before dealing with the main results, and as a matter of clarity in the
development, let us brie�y recall the main de�nitions, the known results, and the
appropriate notations useful in the sequel.
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Para-fermionic algebra 6

De�nition 1 [ Green, 1953]

Let a±1 , ..., a
±
n be the creation and annihilation operators for a system consisting of

n-fermions with commutator relations :

[a−i , a
+
j ] = δij (3.1)

[a−i , a
−
j ] = [a+i , a

+
j ] = 0, (3.2)

or, of n-parafermions with

[[a−i , a
+
i ], a

±
j ] = ±2δija

+
j , (3.3)

where
[X ,Y ] := XY − YX . (3.4)
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Para-fermionic algebra 7

Let T be the associative free algebra of ai , aj ; i , j ∈ N = {1, 2, ...n}, and I be the
two sided ideal in T generated by the relation (??). The Quotient (factor
algebra)

Q =
T

I
(3.5)

is called para-Fermi algebra, for all X ,Y ∈ Q. This is an in�nite dimensional Lie
algebra with respect to the bracket de�ned by the equation (??).
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Semi-simple Lie algebra generated by creation and
annihilation operators 8

De�nition 2 [Palev, 1976]

Let g be a semi-simple Lie algebra generated by n pairs a±1 , ..., a
±
n of creation and

annihilation operators. The elements

hi =
1

2
[a−i , a

+
i ], i = 1, ...n (3.6)

are contained in a Cartan subalgebra H of g . The rank of g ≥ n. If the
semi-simple Lie algebra g of rank n is generated by n pairs of creation and
annihilation operators, then, with respect to the basis of the Cartan subalgebra,
the creation (resp. annihilation) operators are negative (resp. positive) root
vectors. The correspondence with their roots is:

a±i ←→ ±h
∗i . (3.7)

where ±h∗i is a basis in the space dual to the Cartan subalgebra.
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Lie algebra of spin group 9

De�nitions 3

Let now m be an n-dimensional oriented real vector space with an inner product
<,>.

We de�ne the Cli�ord algebra [La Harpe, 1972] Cl(m) over m by the
quotient T (m)/I , where T (m) is a tensor algebra over m and I is the ideal
generated by all elements v ⊗ v+ < v , v > 1, v ∈ m.

The multiplication of Cl(m) will be denoted by x · y .
Let p : T (m) −→ Cl(m) be the canonical projection. Then, Cl(m) is
decomposed into the direct sum Cl+(m)⊕ Cl−(m) of the p-images of the
elements of even and odd degrees of T (m), and m is identi�ed with the
subspace of Cl(m) through the projection p.

Let e1, e2, · · · , en be an oriented orthonormal basis of m. The map:
ei2 · ei2 · · · · · eip 7→ (−1)peip · · · · ei2 · ei1 de�nes a linear map of Cl(m) and
the image of x ∈ Cl(m) by this linear map is denoted by x̄ .
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10

The spin group is de�ned by:

Spin(V ) = {x ∈ Cℓ+(V ) : xVx−1 ⊂ V and xx̄ = 1}.

Let Cℓ(V ) = Cℓp,q = Cℓ(Rp,q) = Rp,q be the Cli�ord algebra over R.
Consider R∗

p,q = Cℓ∗p,q the group of invertible elements of Rp,q. The
exponential of y ∈ Cℓp,q is de�ned by:

exp(y) =
∞∑
n=0

1

n!
yn.

Let π : Spin(V )→ SO(V ) be de�ned by π(x)v = xvx−1. Then, the
di�erential π̇ of π is given by: π̇(x)v = xv − vx , for x ∈ spin(V ) and
v ∈ V .
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Spin Lie group and its Lie algebra 11

Suppose now M is an oriented Riemannian manifold.

De�nition 4[Milnor; Rodrigues]

A spin structure on M consists of a principal �ber bundle π : PSpinep,q (M) −→ M
with a group PSpinep,q and the fundamental map (two fold cover)

s : PSpinep,q (M) −→ PSOe
p,q
(M),

satisfying the following conditions:

(i) π(s(p)) = πs(p) for every p ∈ PSpinep,q (M); π is the projection map of the
bundle PSOe

p,q
(M).

(ii) s(pu) = s(p)Adu for every p ∈ PSpinep,q (M) and

Ad : Spinep,q → Aut(Cℓp,q), Adu : Rp,q 7→ uxu−1 ∈ Cℓp,q.
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12

the following diagram must commute

PSpinep,q (M)

πs

$$

s // PSOe
p,q
(M)

π

zz
M

De�nitions 5 [Milnor; Rodrigues]

A spin manifold is an orientable manifold M together with a spin structure on
the tangent bundle of M.

A spin group is a compact dimensional Lie group.
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Spin Lie Group 13

Spin Lie group

The Lie algebra spin(j) of spin particles can be represented by classical matrices,
which makes it easier to see their algebraic nature:

spin(j) =


higgs j = 0;

fermions j = Z
2 when odd integer spins are considered;

bosons j = Z when positive integer spins are considered.

The Lie algebra sl(2n,C) can represent the fermion spin Lie algebra of
elementary particles in quantum physics. As indicated in the mapping below. We
de�ne Z

2 as fraction of the form ( 2k+12 , k = 0, 1, 2, 3, . . .) :

sl(2n,C) // spin
(Z
2

)
// fermions.
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The Lie group SL(2n,C) structure can represent the fermion Spin Lie group
analogue:

SL(2n,C) // Spin(Z2 )
// fermions,

while the Lie group SL(2n + 1,C) represents the boson Spin Lie group
analogue:

SL(2n + 1,C) // Spin(Z) // bosons.
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SU(2) and Wigner coe�cients 15
We seek a transformation to a set basis denoted |SM⟩, which obeys [Holman III and
Biedenharn Jr, 1966; Thankappan, 1972; Biedenharn and Louck, 1981]:

S2|SM⟩ = S(S + 1)ℏ2|SM⟩, (3.8)

Sz |SM⟩ = Mℏ|SM⟩, (3.9)

S±|SM⟩ = ℏ
√

S(S + 1)−M(M ± 1)|S ,M ± 1⟩. (3.10)

In relation to unitary transformation

|SM⟩ =
∑
m1m2

Us1s2
m1m2;sm|m1m2⟩, (3.11)

where Us1s2
i,j is the ij th element of the unitary matrix Us1s2 that transforms the basis

|m1m2⟩ to the basis |SM⟩ [Thankappan, 1972].

Using the closure property of the basis |m1m2⟩,

|SM⟩ =
∑
m1m2

|s1s2m1m2⟩⟨s1s2m1m2|SM⟩, (3.12)
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SU(2) and Wigner coe�cients 16

comparing equation (??) and (??) lead to:

Us1s2
m1m2;sm ≡ ⟨s1s2m1m2|sm⟩. (3.13)

The Clebsch-Gordan coe�cients (C.G) are obtained as:

Us1s2
m1m2;sm := C s1s2s

m1m2m. (3.14)

The Wigner coe�cients of the SU(2) group are then derived as:

C s1s2S
m1m2M

= [2S + 1]
1

2 (−1)s2+m2

[
(S + s1 − s2)!(S − s1 + s2)!(s1 + s2 − S)!

(S + s1 + s2 + 1)!(s1 −m1)!(s1 +m1)!
(3.15)

× (S +M)!(S −M)!

(s2 +m2)!(s2 −m2)!

] 1

2 ∑
k

(−1)k (3.16)

× (S + s2 +m1 − k)!(s1 −m1 + k)!

k!(S − s1 + s2 − k)!(M + S + k)!(s1 − s2 −M + K)
. (3.17)
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Spin Semi-simplicity 17

Lemma I

Any spin particle Lie algebra admits a Cli�ord algebra and a spin group structure.

Proof.

Consider any spin(j) with j = 0, 12 , 1, . . . , satisfying the spin particle commutator
and anticommutator relations (??), (??), (??) as well as the spin Lie algebra
commutation bracket rule. It is obvious that the Lie algebra spin(j) is a Cli�ord
algebra. Thus, the spin(j) exponential is just

exp : spin(j)→ Spin(J)

where Spin(J) is the spin group. Hence, any spin particle admits a spin group.
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18

Lemma II

Any spin group of a spin particle admits an almost complex spin manifold
(Riemannian manifold) and a spin Lie group structure.

Proof.

From Lemma ??, any spin particle admits a spin group. Also, from De�nition ??,
the spin group, say Spin(J), has a group structure with an almost complex
manifold. Thus, from De�nition 3.3, the spin particle, say Spin(J) with
J = 0, 12 , . . . , admits a spin manifold. Next, we see that any spin particle has a
spin group, say Spin(J). Since any spin particle has a spin manifold, we observe
that Spin(J) is a spin group and, hence, a spin Lie group.
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19

Proposition I

Any spin half odd integer (resp. integer spin) Lie group is a fourfold cover of the
compact Lie group SO(2n) (resp. a double cover of SO(2n + 1)).

Proof

The fermion quantum structure can be given as:

Spin(J) // Spin(Z2 ) .

The map

SL(2n,C) // Spin(Z2 )
// SO(2n),

where SO(2n) conserves the quadratic form in C2n.
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20

Proof

where SO(2n) conserves the quadratic form in C2n. The compact simple Lie group
SO(2n) is fourfold connected and its center Z (G) is Z4 when n is odd or Z2 × Z2

when n is even. Since Spin(Z2 ) is a fermion with Z as an odd integer, the diagram

SL(2n,C) −→ Spin(Z2 )
↘

↑ ↓ fermions
↗

SU∗(2n) −→ SO(2n)

Francis Atta Howard GROUP-ALGEBRAIC CHARACTERIZATION OF SPIN PARTICLES: SEMI-SIMPLICITY, SO(2N) STRUCTURE AND IWASAWA DECOMPOSITION20 / 1



21

must commute. Thus, the fermion Spin Lie group is a fourfold cover of SO(2n).
Similarly, the boson quantum structure can be given as:

Spin(J) // Spin(Z)

where Z is an integer. The map

SL(2n + 1,C) // Spin(Z) // SO(2n + 1),

where SO(2n+ 1) conserves the quadratic form in C2n+1. The compact simple Lie
group SO(2n+ 1) is doubly connected and its center Z (G) is Z2. Since Spin(Z) is
a boson, where Z is an integer, the diagram

SL(2n + 1,C) //

''

Spin(Z)

�� %%
SO(2n + 1) // boson
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22

must commute. We conclude that the boson spin Lie group is the double cover of
SO(2n + 1). See [Helgason, 1962] for more details.

Theorem I

Any spin Lie group Spin(J) of a spin particle is:

(i) connected;

(ii) semi-simple if and only if its simple roots are one of the Dynkin's root
systems Π(Bn) or Π(Dn) associated with the classical groups SO(2n + 1) and
SO(2n), respectively.

Proof

We let Spin(J) be a spin Lie group with J = 0, 12 , 1, . . . . For Spin(0), Spin(
1
2 ), and

Spin(1), we have, respectively, the diagram:
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SL(1,C) //

%%

Spin(0)

�� ''
SO(1) // boson (Higgs),

SL(2,C) //

%%

Spin( 12 )

�� %%
SO(2) // fermion,

SL(3,C) //

%%

Spin(1)

�� $$
SO(3) // boson.

these Lie groups SO(1), SO(2) and SO(3) are connected [Helgason, 1962].
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The results can be extended to all spin Lie groups of elementary particles as
shown in Proposition ??. Fermions and bosons spin Lie groups are fourfold
connected and double connected, respectively. More speci�cally, the spin Lie
groups such as Spin( 12 ) fourfold covers the compact Lie group SO(2), while
Spin(1) double covers SO(3).
[Proof of (ii)] We know that the creation and annihilation operators generate a
semi-simple Lie algebra g of rank n which is a direct sum of classical Lie algebras

g = Bm1
⊕ · · · ⊕ Bmk

,

where m1 + · · ·+mk = n. Therefore, the creation and annihilation operators of
spin particles generate simple Lie algebra g of rank n isomorphic to the classical
algebra Bn with a complete system Φ of roots orthogonal with respect to the
Killing form [Palev, 1976]. Also, from equations (??) and (??), when we compare
the bracket relation to that of the Dynkin's root

∑
Dn, see equation (??), we

observe that there is a correspondence.
In Lemma ??, we showed that every spin group of a spin particle is a spin Lie
group.
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We can determine the system of simple roots Π(Bn) and Π(Dn) associated with
the classical groups SO(2n) and SO(2n + 1). A semi-simple Lie group G is
completely determined by the system Π(G) of its simple roots [?]. Thus, the spin
Lie group of a spin particle is completely determined by Π(G) of its simple roots.
The converse is trivial since the classical groups [?,?] SO(2n) and SO(2n + 1)
correspond with the Π(Bn) and Π(Dn) (Dynkin's root system), which are the
operators of the quantum spin particles generated by the creation and annihilation
operators of rank n, since the spin Lie group is connected and its Lie algebra is
semi-simple. Thus, the spin Lie group is semi-simple. □

The sl(2,C) Lie algebra can be decomposed into the compact real su(2) and
imaginary isu(2) forms, or sl(2,R) and isl(2,R). It is only natural to seek the real
form of the spin half particle Lie algebra in terms of Pauli matrices [Pauli Jr,
1927], which are sl(2,C) matrix basis elements.
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Real Lie algebra of Spin particle 26

Proposition II

The real Lie algebra spin
(
1
2

)
of spin half particles (Spin ( 12 )) is given by

spin
(
1
2

)
= {S ∈ M2(R)|TrS = 0}.

1 The elements Sk =ℏ
2

(
0 1
−1 0

)
, Sz =

ℏ
2

(
1 0
0 −1

)
, S+ = ℏ

(
0 1
0 0

)
form a basis of the spin ( 12 ).

2 The commutation relations are given by :

[Sk ,Sz ] = −ℏSx , [Sk ,S+] = ℏSz , [Sz ,S+] = ℏS+.

Proof.

Take an arbitrary angular momentum spin( 12 ) with spinors

χ =

(
a
b

)
= aχ 1

2

+ bχ− 1

2

, χ 1

2

=

(
1
0

)
and χ− 1

2

=

(
0
1

)
.
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Let

Sx =
S+ + S−

2
and Sy =

S+ − S−
2i

.

From the above equations (??) and (??), we can write S2 and Sz in terms of
spinors. Indeed,

S2χ 1

2

= ℏ2
1

2

(
1

2
+ 1

)∣∣∣∣χ 1

2

〉
=

3

4
ℏ2χ 1

2

, S2χ− 1

2

= ℏ2
3

4
χ− 1

2

. (5.1)

From equations (??), we can deduce

S2 =
3

4
ℏ2

(
1 0
0 1

)
=

3

4
ℏ2I ,

where I =

(
1 0
0 1

)
is the identity matrix. Similarly,

Szχ 1

2

=
ℏ
2
χ 1

2

and Szχ− 1

2

= −ℏ
2
χ− 1

2

.
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Therefore,

Sz =
ℏ
2

(
1 0
0 −1

)
=

ℏ
2
σz .

By analogous computations, we get:

S+ = ℏ
(

0 1
0 0

)
= ℏσ+ (5.2)

and

S− = ℏ
(

0 0
1 0

)
= ℏσ−. (5.3)

Similarly,

Sx =
S+ + S−

2
=

ℏ
2

(
0 1
1 0

)
=

ℏ
2
σx (5.4)

and

Sy =
S+ − S−

2i
= −iSk =

−iℏ
2

(
0 1
−1 0

)
=
−iℏ
2
σk =

ℏ
2

(
0 −i
i 0

)
=

ℏ
2
σy .

(5.5)
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Lemma III

For a spin( 12 ) there exists an orthogonal (skew symmetric) matrix element Sk
(with ℏ = 1), which can be transformed into an SO(2) compact Lie group. For

g =

(
a b
c d

)
∈ SL(2,R) = G, the stabilizer of i ∈ C under the action of g is the

subgroup K = SO(2).

Remark

The spin
(
1
2

)
∈ sl(2,C). Thus, it is complex, and for good notation, we write

spin
(
1
2 ,C

)
⊂ sl(2,C). For the real form, we write spinR

(
1
2

)
⊂ sl(2,R). Finally,

spin

(
1

2
,C

)
= spinR

(
1

2

)
⊕ ispinR

(
1

2

)
.

For simplicity, in the next section, we use the usual notation spinR(
1
2 ) to be the

real form spin
(
1
2 ,R

)
of the spin half particle. Note, when ℏ = 1,

spinR(
1
2 ) = su(2) and spin

(
1
2 ,C

)
⊂ sl(2,C).
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Iwasawa Decomposition of Spin (12) particle 30

Theorem II

(i) Let θ, t, ξ be arbitrary real numbers, and put ℏkθ = exp(θSk),

ℏd
1

2

t = exp(tSz), and ℏnξ = exp(ξS+). Then, the subgroups ℏ3KDN of Spin(
1
2

)
are de�ned by: ℏKθ = {ℏkθ|θ ∈ R}, ℏD = {ℏd

1

2

t |t ∈ R} and
ℏN = {ℏnξ|ξ ∈ R}. We have:

ℏkθ =

(
ℏ cos θ

2 ℏ sin θ
2

−ℏ sin θ
2 ℏ cos θ

2

)
, ℏd

1

2

t =

(
ℏe t

2 0

0 ℏe− t
2

)
'

ℏnξ =

(
ℏ ℏξ
0 ℏ

)
,

ℏK ∼= R
4πZ
∼= T , ℏD ∼= R, ℏN ∼= R.

(ii) Any spin
(
1
2

)
particle is uniquely decomposable in the form:

spin

(
1

2

)
= ℏ3 kθd

1

2

t nξ = exp (θ⟨sm|Sk |sm⟩) · exp (t⟨sm|Sz |sm⟩) · exp (ξ⟨sm|S+|sm⟩) .

(6.1)
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Iwasawa decomposition of Lie algebra and Lie group Levels
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Theorem II: Iwasawa Decomposition of Spin (1
2
) particle

If spin ( 1
2
) =

(
a b
c d

)
∈ SL(2,R), then, θ, t, ξ in Theorem II (i) are given by the

relations:

exp

(
i
θ

2

)
=

a− ic

ℏ3
√
a2 + c2

, (6.2)

exp(t) =
a2 + c2

ℏ6
, (6.3)

and

ξ =
ℏ6(ab + cd)

a2 + c2
. (6.4)
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Proof.
Since

ℏkθ = exp(θSk) = exp (θ⟨sm|Sk |sm⟩) (6.5)

= exp

(
θ
ℏ
2

(
0 1
−1 0

))
= ℏ exp

(
θ

2

(
0 1
−1 0

))
(6.6)

and

ℏKθ = ℏ

[ ∞∑
n=0

(−1)n

(2n)!

(
θ

2

)2n

· I +
∞∑
n=0

(−1)n

(2n + 1)!

(
θ

2

)2n+1

·σk

]

= ℏ
(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)
.

By isomorphism θ 7−→ ℏKθ, we obtain: ℏK ∼=
R

4πZ
∼= T .
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Moreover,

ℏd
1

2

t = exp (t(Sz)) = exp (t⟨sm|Sz |sm⟩)

=
∞∑
n=0

1

n!
(t Sz)

n = ℏ
∞∑
n=0

1

n!
(t σz)

n = ℏ
(

e
t
2 0

0 e−
t
2

)
.

By isomorphism t 7−→ ℏd
1

2

t , we also have: D ∼= R. Now, since (S+)
2 = 0,

ℏnξ = exp (ξS+) = ℏ exp (ξ σ+) = exp (ξ⟨sm|S+|sm⟩) = ℏ
(

1 ξ
0 1

)
.

By matrix multiplication, we have:(
a b
c d

)
= ℏ3 kθd

1

2

t nξ = exp (θ⟨sm|Sk |sm⟩) · exp (t⟨sm|Sz |sm⟩) · exp (ξ⟨sm|S+|sm⟩)

=

(
ℏ3 exp

(
t
2

)
cos θ

2 ℏ3cos θ
2 exp

(
t
2

)
ξ + ℏ3sin θ

2 exp
(
− t

2

)
−ℏ3 exp

(
t
2

)
sin θ

2 −ℏ3sin θ
2 exp

(
t
2

)
ξ + ℏ3cos θ

2 exp
(
− t

2

) )
.
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yielding

a = ℏ3 exp
( t

2

)
cos

θ

2
, c = −ℏ3 exp

( t

2

)
sin
θ

2
,

and

a− ic = ℏ3 exp
(
t

2
+ i

θ

2

)
.

Hence, |a− ic | = ℏ3 exp
(
t
2

)
, we easily get equations (??) and (??), and

ab + cd = exp(t)ξ (6.7)

from which we can clearly obtain equation (??). End of the proof.

Now we know that Spin
(
1
2

)
is spanned by two states: {| 12

1
2 ⟩, |

1
2 ,−

1
2 ⟩}. From

equations (??), (??) and (??), we can calculate the angular momentum for spin
half integers such as 1

2 ,
3
2 ,

5
2 and so on· · · [Thankappan, 1972].

A question arises: What can the general term (last term) of a spin half integer
be? From a theoretical point of view, this can be useful in the study of particle
rotational forms. We have the following results:
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Theorem III

For any spin( 2n−1
2 ) (fermions) quantum state, where n = 1, 2, 3, . . . , we have:

(i) S2 |S ,M⟩n =
(
4n2−1

4

)
ℏ2 |S ,M⟩ .

(ii) Sz |S ,M⟩n = ±
(
2n−k
2

)
ℏ |S ,M⟩ where k ≤ 2n, and n = 1, 2, . . ., with

k = 1, 3, 5, . . ..

(iii) The nth possible state of a spin half particle is given by:

Msn = 2Sn + 1 = 2n,

where n = 1, 2, 3, . . .. The quantum state of the fermion is spanned by 2n
states: ∣∣∣∣(2n − 1

2

)
,±

(
2n − 1

2

)〉
, . . . ,

∣∣∣∣(2n − 1

2

)
,±

(
2n − k

2

)〉
,

where k = 1, 3, 5, . . . , with k ≤ 2n.
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(iv) The ladder operators act as follows:

S+n

∣∣∣∣(2n − 1

2

) (
2n − k

2

)〉
= ℏ

√
(k − 1)n −

(
(k − 1)(k − 1)

4

)∣∣∣∣S ,M + 1⟩,

(6.8)

S+n

∣∣∣∣(2n − 1

2

)
, −

(
2n − k

2

)〉
= ℏ

√
(k + 1)n −

(
(k + 1)(k + 1)

4

)∣∣∣∣S ,M+1⟩,

(6.9)
Note

Syn =
S+n − S−n

2i
=

ℏσkn
2i

= −iSkn . (6.10)
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Theorem IV

For any spin( 2n−1
2 ), the quantum state of the particle is spanned by 2n states and

there exists orthogonal matrix element Skn in the Syn matrix which can be
transformed into the classical group SO(2n) with natural numbers n = 1, 2, 3, . . ..
This compact Lie group SO(2n) corresponds to the Dynkin's root Π(Dn).

Proof.

From Lemma III, From Lemma ?? we observe that the theorem is true for n = 1.
For spin( 2n−1

2 ) particle quantum state spanned by 2n states, we consider similar
arguments for Theorem II, replacing the Sk matrix by the nth matrix Skn and
deducing in the same manner as in Lemma III to obtain the above Theorem III.
Speci�cally, from Theorem II, there exists Skn matrix in the Syn matrix from
equation 6.10. One can check that these matrices are orthogonal and generate
SO(2n) with n = 1, 2, 3 . . .. For n = 1 we have the compact Lie group SO(2) as in
Lemma III. Finally, the correspondence to the Dynkin's roots Π(Dn).
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Proposition III [Sugiura, 1977]

For an element g ∈ SpinR
(
1
2

)
and θ ∈ R, let

gkθ = kg ·θd
1

2

t(g ,θ)nξ(g ,θ)

be the Iwasawa decomposition of gkθ. If ℏ = 1, then, the following cocycle
conditions hold, for g , g ′ which are projections in SL(2,R) ⊃ SpinR

(
1
2

)
:

1 (i) (gg ′) · θ ≡ g · (g ′ · θ) (mod 4π);
(ii) t (gg ′, θ) = t (g , g ′ · θ) + t (g ′, θ) ;
(iii) g · (θ + 2π) = g · θ + 2π (mod 4π), t (g , θ + 2π) = t (g , θ) .
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Proposition III [Sugiura, 1977]

1 If g =

(
a b
c d

)
, then, we have:

(i) exp
(

i(g·θ)
2

)
=

(a− ic) cos θ
2
+ (−b + id) sin θ

2

| (a− ic) cos θ
2
+ (−b + id) sin θ

2
|
;

(ii) exp (t (g , θ)) = | (a− ic) cos θ
2
+ (−b + id) sin θ

2
|2;

(iii) ξ (g , θ) = exp (−t (g , θ))×[
(ab + cd) cos θ + 1

2

(
a2 − b2 + c2 − d2

)
sin θ

]
;

(iv) d (g·θ)
dθ

= exp (−t (g , θ)) .
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Theorem V[Main Result: Particle Decomposition]

Any spin Lie group G can be uniquely decomposed in the form:

G = ÆKDsN

where K is compact, Ds is a rotational function (d-function), and N is nilpotent
(Ladder operators). We denote by �(α−1) the �ne structure constant and all
other translational energy of elementary spin particles.

Fine structure constant

α2 =
(kc) (q)

2

(h/π) (c)
, α−1 = 137.036...

α =
1

137
= Æ.
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Proof

We will give a physical interpretation to this theorem. Let us consider the Iwasawa
decomposition of an electron which has a spin half. Suppose an electron is at rest
in a homogeneous magnetic �eld. Its eigenfunctions do not depend upon its
position. Given µ, the magnitude of Bohr magneton and H, the Hamiltonian, one
then obtains the system of equations for (ψα,ψβ) as follows

µ[(Hx − iHy )ψβ + Hzψα] = Eψα

µ[(Hx + iHy )ψα − Hzψβ] = Eψβ

from which we �nd that E = ±µ|H|. If we denote the angle between the �eld
direction and the z-axis by θ and normalizes (ψα, ψβ) by the way of

|ψα|2 + |ψβ |2 = 1. (7.1)
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Proof Cont'd

This then corresponds to the determinant of the compact (K ) function in the
Iwasawa decomposition, that is, cos2 θ

2 + sin2 θ
2 = 1. If one suddenly rotates the

external magnetic �eld in the z-direction; cos2 θ
2 is then the fraction of the

electron with moments that are directed parallel to the z-axis and sin2 θ
2 is the

fraction of electron with moments that are directed anti-parallel to the z-axis and
vice versa. Consider the subgroup Ds = {Ds

mm′(t) | t ∈ R}, with

Ds
mm′(t) = d s

mm′(t) = d s
t .

Ds is the rotational function(d-function) and Ds
mm′(t) is the Clebsch-Gordon

coe�cient. Given the identity

exp(itKy )Kz exp(−itKy ) = cosh t · Kz −
1

2
sinh t · (K+ + K−) (7.2)

which can be de�ned using the Campbell-Hausdor� formula together with the
SU(1, 1) commutation relation.
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Ptoof Cont'd

Taking the matrix element of

Kz exp(−itKy ) = cosh t exp(−itKy )Kz

− 1

2
sinh t exp(−itKy )(K+ + K−) (7.3)

between |s,m⟩ and |s,m′⟩, one can easily obtain the recurrence formula for the
d-function. For the �nite (2S + 1)-dimensional case, we have:

(m′ − cosh t ·m)d s
mm′(t) +

1

2
sinh t

(
−
√
(s −m)(s +m + 1)d s

mm′(t)

+
√
(s +m)(s −m + 1)d s

m′m−1(t)
)
= 0 (7.4)
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Cont'd

which leads to the factorization of the d-function of SU(1, 1):

d s
m′m(t)

=

[
Γ(s −m + 1)Γ(s +m′ + 1)

Γ(s +m + 1)Γ(s −m′ + 1)

] 1

2 1

Γ(m′ −m + 1)
×(

cosh
( t

2

))2s+m−m′ (
sinh

( t

2

))m−m′

×2 F1
(
m; tanh2

( t

2

))
(7.5)

where m′ ≥ m. Substituting formula (??) into (??), we obtain:

(s +m)(s −m + 1) tanh2
( t

2

)
×2 F1

(
m − 1; tanh2

( t

2

))
+ cosh−2

( t

2

)
(m′ − cosh t ·m)×2 F1

(
m; tanh2

( t

2

))
− (m′ −m + 1)(m′ −m) · ×2F1

(
m + 1; tanh2

( t

2

))
= 0. (7.6)
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proof Cont'd

d s
m′m(t) =

[
Γ(s −m + 1)Γ(s +m + 1)

Γ(s −m′ + 1)Γ(s +m′ + 1)

] 1

2 (
cosh

( t

2

))−m−m′

×
(
sinh

( t

2

))m−m′

Pm′−m,−m−m′

s+m cosh(t). (7.7)

We note that the form Ds
mm′ = d s

mm′(t) = d s
t and d

1

2

t is the Abelian subgroup in
the Iwasawa decomposition.
Finally, for the Nilpotent (N) function say, K+ in the 2-dimensional non-unitary
representation is the non-compact operator which generates elements of the
parabolic subgroup of SU(1, 1).
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Is Spin(n) in Mathematics the same as the Spin(J) in
particle Physics? 46

In mathematics the spin group spin (n) is a double cover of the special orthogonal
group SO (n).

Spin (3)

��
SO(3)

however, in particle Physics

SL(3,C) //

%%

Spin (1)

�� $$
SO(3) // boson,

and similarly,In Mathematics
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Spin (2)

��
SO(2)

while in Physics;

SL(2,C) //

%%

Spin ( 12 )

�� %%
SO(2) // fermion.

Remark

The Iwasawa decomposition of the spin half particle into compact, rotational
(Abelian), and nilpotent functions (subgroups) can also be performed for isospins.
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Concluding remarks 48

Concluding remarks

In this work,

we provided an extension of semi-simplicity of spin particle Lie algebra to the
Lie group level,

we showed that a spin particle Lie algebra admits a Cli�ord algebra, an
almost complex manifold and a spin Lie group structure,

we demonstrated that any spin half particle, (resp. integer spin), spin Lie
group is a fourfold, (resp. double), cover of the SO(2n), (resp. SO(2n + 1)),
we also proved that any spin Lie group of a spin particle is connected and
semi-simple,

we constructed the real Lie algebra of the Spin
(
1
2

)
particle,

we also performed the Iwasawa decomposition of the spin half into KDN,

�nally, we applied the angular momentum coupling to the Spin
(
2n−1
2

)
particle and demonstrated that the orthogonal basis transforms into the
SO(2n) one, which is nothing but the Dynkin's root Dn.
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