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Motivation 3

@ Doran in 1993 showed that every linear transformation can be represented as
a monomial of vectors in geometric algebra, every Lie algebra as a bivector
algebra, and every Lie group as a spin group.

@ Schwinger's realization of su(1,1) Lie algebra with creation and annihilation

operators was defined with spatial reference in the Pauli matrix
representation [W. Pauli, 1927; J. Schwinger, 1945].

@ Several relations as well as connections were observed in spin particles such as
fermionic, bosonic, parastatistic Lie algebras, and in geometric algebras such
as the Clifford algebra, Grassmannian algebra and so on [G. Sobezyk, 2015 ].

@ Sobczyk proved that the spin half particles can be represented by geometric
algebras. [G. Sobezyk, 2015 ]

e T.D. Palev in 1976 highlighted that a semi-simple Lie algebra can be
generated by the creation and annihilation operators. In all the above
mentioned works, the classical groups such as B, and D, play a crucial role in
the spin particle Lie algebra.
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Motivation 4

@ Moreover, several evidences from particle and theoretical physics showed the
connection between quantum spin particle Lie algebra and Clifford algebra
[Doran et al., 1993].

@ The spin of elementary particles obeying the Fermi-Dirac statistics, the
Bose-Einstein statistics, the quantization of parastatistics such as
parafermions and parabosons also gained much attention in the
literature[Pauli Jr, 1927; Biedenharn and J.Louck, 1981; Doran et al;
Schwinger, 1945; Thankappan,1972 Sobezyk, 2015].

@ In the opposite, exhaustive investigations on spin particle creation and
annihilation and their angular momentum in connection with Lie groups, Lie
algebras, Clifford algebras, and their representations are still lacking. This
study aims at fulfilling this gap. The Iwasawa decomposition, introduced by
the Japanese mathematician Kenkichi lwasawa, generalizes the Gram-Schmidt
orthogonality process in linear algebra[Holman Il and Biedenharn Jr, 1966].
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Motivation 5

Motivated by all the above mentioned works, a natural questions arise: )

© Is spin in Mathematics the same as the spin in particle Physics?

@ If spin (n) is a double cover of SO (n) group, what is the cover of spin (2)
and what is also the cover for spin (1/2) are they both related?

© Is it possible to construct the lwasawa decomposition at both the Lie algebra
and Lie group levels of the spin particles ?

But before dealing with the main results, and as a matter of clarity in the
development, let us briefly recall the main definitions, the known results, and the
appropriate notations useful in the sequel.
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Para-fermionic algebra

Definition 1 [ Green, 1953]

Let ali, ...,ar be the creation and annihilation operators for a system consisting of
n-fermions with commutator relations :
[a; . 3] = o5 (3.1)
[a7 2] = [a], aj*] =0, (3.2)
or, of n-parafermions with
a7, a7], a7] = £265a], (33)
where
[X,Y]:= XY — YX. (3.4)
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Para-fermionic algebra 7

Let T be the associative free algebra of a;, aj; i,j € N ={1,2,...n}, and [ be the
two sided ideal in T generated by the relation (??). The Quotient (factor
algebra)

Q=7 (3.5)

is called para-Fermi algebra, for all X, Y € Q. This is an infinite dimensional Lie
algebra with respect to the bracket defined by the equation (?7).
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Semi-simple Lie algebra generated by creation and
annihilation operators

Definition 2 [Palev, 1976]

Let g be a semi-simple Lie algebra generated by n pairs ale7 ...,ar of creation and
annihilation operators. The elements

1
hi =Gl afli=1,..n (3.6)

are contained in a Cartan subalgebra H of g. The rank of g > n. If the
semi-simple Lie algebra g of rank n is generated by n pairs of creation and
annihilation operators, then, with respect to the basis of the Cartan subalgebra,
the creation (resp. annihilation) operators are negative (resp. positive) root
vectors. The correspondence with their roots is:

+

af «— +h. (3.7)

where £h*' is a basis in the space dual to the Cartan subalgebra.
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Lie algebra of spin group

Definitions 3
Let now m be an n-dimensional oriented real vector space with an inner product
<, >

o We define the Clifford algebra [La Harpe, 1972] C/(m) over m by the
quotient T(m)//, where T(m) is a tensor algebra over m and / is the ideal
generated by all elements v v+ < v,v > 1, v E m.

@ The multiplication of C/(m) will be denoted by x - y.

@ Let p: T(m) — Cl(m) be the canonical projection. Then, C/(m) is
decomposed into the direct sum C/*(m) @ C/~(m) of the p-images of the
elements of even and odd degrees of T(m), and m is identified with the
subspace of C/(m) through the projection p.

o Let e, e, -, e, be an oriented orthonormal basis of m. The map:
€2 - €jo - -+ - €jp > (—1)Pejp - - - - €2 - i1 defines a linear map of C/(m) and
the image of x € C/(m) by this linear map is denoted by Xx.
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@ The spin group is defined by:

Spin(V) = {x € C*(V): xVx ! C V and xx = 1}.

o Let CU(V) = Cl, 4= CUR, q) =R, 4 be the Clifford algebra over R.
Consider Ry , = Cl; . the group of invertible elements of R, ;. The
exponential of y € Cl,, , is defined by:

exp(y i nl
n=0

o Let 7 : Spin(V) — SO(V) be defined by 7(x)v = xvx~!. Then, the
differential 7 of 7 is given by: 7(x)v = xv — vx, for x € spin(V) and
veV.
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Spin Lie group and its Lie algebra

Suppose now M is an oriented Riemannian manifold.

Definition 4[Milnor; Rodrigues]
A spin structure on M consists of a principal fiber bundle « : Pspinqu(M) — M
with a group Pspine - and the fundamental map (two fold cover)

S Pspin;q(M) — PSO;,q(M)’

satisfying the following conditions:
(i) m(s(p)) = ms(p) for every p € Pspine (M); 7 is the projection map of the
bundle PSOf,,q(M)'
(i) s(pu) = s(p)Ad, for every p € Pspine (M) and

Ad : Spin®  — Aut(Cl,,), Ad,:Rpq— uxu"te Cly,.
P.q P,q P,q P,q
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the following diagram must commute

Psoe M)

\/

PSpine

Definitions 5 [Milnor; Rodrigues]

@ A spin manifold is an orientable manifold M together with a spin structure on
the tangent bundle of M.

@ A spin group is a compact dimensional Lie group.
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Spin Lie Group

Spin Lie group

The Lie algebra spin(j) of spin particles can be represented by classical matrices,
which makes it easier to see their algebraic nature:

higgs Jj=0;
spin(j) = < fermions j = % when odd integer spins are considered;

bosons  j = Z when positive integer spins are considered.

The Lie algebra s[(2n, C) can represent the fermion spin Lie algebra of
elementary particles in quantum physics. As indicated in the mapping below. We

define £ as fraction of the form (25, k =0,1,2,3,...) :

sl(2n, C) — spin (£

) —— fermions.
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@ The Lie group SL(2n,C) structure can represent the fermion Spin Lie group
analogue:
SL(2n,C) — Spin(%) —— fermions,

while the Lie group SL(2n + 1, C) represents the boson Spin Lie group

analogue:
SL(2n+1,C) —— Spin(Z) —— bosons.

s> == =]

EFTON
Hl

tlfe

EH Gl

-

1
i

| -

1]

e

5

!
E .
1

E
§=d
GAUGH

Francis Atta Howard GROUP-ALGEBRAIC CHARACTERIZATION OF SPIN PARTICLES



SU(2) and Wigner coefficients 15

We seek a transformation to a set basis denoted |SM), which obeys [Holman III and
Biedenharn Jr, 1966; Thankappan, 1972; Biedenharn and Louck, 1981]:

S?|SM) = S(S + 1)i*|SM), (3.8)
S,|SM) = Mh|SM), (3.9)
S+|SM) = h\/S(S +1) — M(M +1)|S,M £ 1). (3.10)

@ In relation to unitary transformation

|5M> = Z Uls#lsrznz;sm|m1m2>7 (311)

mym2

@ where U™ is the ij*" element of the unitary matrix U2 that transforms the basis
|mym;) to the basis |SM) [Thankappan, 1972].

@ Using the closure property of the basis |mima),

|SM) = >~ [simum;) (s152m1m2| SM), (3.12)

mym2
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SU(2) and Wigner coefficients

@ comparing equation (??) and (?7?) lead to:

U2 s = (S152m1m2|sm). (3.13)

@ The Clebsch-Gordan coefficients (C.G) are obtained as:

Uss o Css (3.14)

myma;sm mymam-*

e The Wigner coefficients of the SU(2) group are then derived as:

s1s 1 sotma | (S+ 51 —2)(S — 51+ %)l(s1 +5 —5)
=S, =25 17} (—1)=me | ¢
mmy = [25 4112 (1) (S+s1+s2+ 1) (51— ma)l(s1 + ma)!

x A5 MNS = M)! FZ(l)k (3.16)

($2+m2)!(52—m2)! "

' (3.15)

% (5+52 +my — k)!(51 —m +k)|
KI(S—sits—KIM+S+K)(s1—5— M+ K)

(3.17)
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Spin Semi-simplicity

Any spin particle Lie algebra admits a Clifford algebra and a spin group structure.

Consider any spin(j) with j =0, %, 1,..., satisfying the spin particle commutator
and anticommutator relations (?7), (?7), (?7) as well as the spin Lie algebra
commutation bracket rule. It is obvious that the Lie algebra spin(j) is a Clifford

algebra. Thus, the spin(j) exponential is just

exp : spin(j) — Spin(J)

where Spin(J) is the spin group. Hence, any spin particle admits a spin group. []

v
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Any spin group of a spin particle admits an almost complex spin manifold
(Riemannian manifold) and a spin Lie group structure.

From Lemma ?7?, any spin particle admits a spin group. Also, from Definition ?7,
the spin group, say Spin(J), has a group structure with an almost complex
manifold. Thus, from Definition 3.3, the spin particle, say Spin(J) with

J=0, %, ..., admits a spin manifold. Next, we see that any spin particle has a
spin group, say Spin(J). Since any spin particle has a spin manifold, we observe
that Spin(J) is a spin group and, hence, a spin Lie group. Ol

v
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Proposition |

Any spin half odd integer (resp. integer spin) Lie group is a fourfold cover of the
compact Lie group SO(2n) (resp. a double cover of SO(2n + 1)).

The fermion quantum structure can be given as:

Spin(J) — Spin(%) .

The map
SL(2n, C) — Spin(%) — SO(2n),

where SO(2n) conserves the quadratic form in C2".

Francis Atta Howard GROUP-ALGEBRAIC CHARACTERIZATION OF SPIN PARTICLES



where SO(2n) conserves the quadratic form in C?". The compact simple Lie group
SO(2n) is fourfold connected and its center Z(G) is Zs when n is odd or Zy X Z;
when n is even. Since Spin(%) is a fermion with Z as an odd integer, the diagram

SL(2n,C) — Spin(%)
hN

T i fermions

/

SU*(2n) —s  SO(2n)
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must commute. Thus, the fermion Spin Lie group is a fourfold cover of SO(2n).
Similarly, the boson quantum structure can be given as:

Spin(J) — Spin(Z)
where Z is an integer. The map
SL(2n + 1,C) — Spin(Z) — SO(2n + 1),
where SO(2n + 1) conserves the quadratic form in C2"*1. The compact simple Lie
group SO(2n + 1) is doubly connected and its center Z(G) is Z,. Since Spin(Z) is

a boson, where Z is an integer, the diagram

SL(2n+1,C) — Spin(Z)

TN

SO(2n 4 1) —— boson
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22

must commute. We conclude that the boson spin Lie group is the double cover of
SO(2n + 1). See [Helgason, 1962] for more details.

Any spin Lie group Spin(J) of a spin particle is:
(i) connected;

(ii) semi-simple if and only if its simple roots are one of the Dynkin's root
systems (B,) or M(D,) associated with the classical groups SO(2n + 1) and
SO(2n), respectively.

v,

We let Spin(J) be a spin Lie group with J =0,1,1,.... For Spin(0), Spin(}), and

%)
Spin(1), we have, respectively, the diagram:
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SL(1,C) —— Spin(0)

NS

SO(1) —— boson (Higgs),
SL(2,C) — Spin(})

SO(2) —— fermion,

SL(3,C) —— Spin(1)

SN

SO(3) — boson.
these Lie groups SO(1), SO(2) and SO(3) are connected [Helgason, 1962].
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The results can be extended to all spin Lie groups of elementary particles as
shown in Proposition ??. Fermions and bosons spin Lie groups are fourfold
connected and double connected, respectively. More specifically, the spin Lie
groups such as Spin(%) fourfold covers the compact Lie group SO(2), while
Spin(1) double covers SO(3).

[Proof of (ii)] We know that the creation and annihilation operators generate a
semi-simple Lie algebra g of rank n which is a direct sum of classical Lie algebras

g:Bm1®"'®Bmka

where my + - -+ + my = n. Therefore, the creation and annihilation operators of
spin particles generate simple Lie algebra g of rank n isomorphic to the classical
algebra B, with a complete system ® of roots orthogonal with respect to the
Killing form [Palev, 1976]. Also, from equations (??) and (??), when we compare
the bracket relation to that of the Dynkin's root > D,, see equation (?7), we
observe that there is a correspondence.

In Lemma ??, we showed that every spin group of a spin particle is a spin Lie

group.
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We can determine the system of simple roots 1(B,) and IN(D,) associated with
the classical groups SO(2n) and SO(2n + 1). A semi-simple Lie group G is
completely determined by the system T(G) of its simple roots [?]. Thus, the spin
Lie group of a spin particle is completely determined by M(G) of its simple roots.
The converse is trivial since the classical groups [?,?] SO(2n) and SO(2n + 1)
correspond with the M(B,) and MN(D,) (Dynkin’s root system), which are the
operators of the quantum spin particles generated by the creation and annihilation
operators of rank n, since the spin Lie group is connected and its Lie algebra is
semi-simple. Thus, the spin Lie group is semi-simple. O

The s/(2,C) Lie algebra can be decomposed into the compact real su(2) and
imaginary isu(2) forms, or s/(2,R) and is/(2,R). It is only natural to seek the real
form of the spin half particle Lie algebra in terms of Pauli matrices [Pauli Jr,
1927], which are s/(2, C) matrix basis elements.
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Real Lie algebra of Spin particle 26

Proposition Il

The real Lie algebra spin () of spin half particles (Spin (3)) is given by
spin (3) = {S € Mx(R)|TrS = 0}.

0Thee|ements$k:’§< _01 é),Sz:’;i((l) _01 ),5+:h<8

form a basis of the spin ().

@ The commutation relations are given by :
[Sk, Sz] = —hSk, [Sk, Si] = hS;, [Sz, S ] = RSy

O =

Take an arbitrary angular momentum spin(%) with spinors

a 1 0
X—(b)—BX;+bX—;:X;—(O)a"dX_;—<1)-
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Let
S+ S S, -5

2 2i

From the above equations (7?) and (??), we can write $? and S, in terms of
spinors. Indeed,

1/1 3
52X;:h2(+1)‘X;>:4h2X;7 52)(,

Sx and S, =

3

N[=

2\2

From equations (??), we can deduce

3 1 0 3
2 _ Y2 _ Y32
S_4h(0 1>_4hl’

where | = ( (1) ) is the identity matrix. Similarly,

O =

NS

h
S;x1 = xzand S;x_1 = —5X-1-

1
2
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Therefore,

By analogous computations, we get:

0 1
and
00
S—h<1 0):ha (5.3)
Similarly,
S.+S. h{o0 1 h
5*‘2‘2(1 0)‘2"* (54)
and
S, -5 _ —ih 0 1\ —ih h(0 —i\ h
> 2i _’5k<—1 0)2‘”2(/ 0o )27

(5.5)
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For a spin(1) there exists an orthogonal (skew symmetric) matrix element Sy
(with h = 1), which can be transformed into an SO(2) compact Lie group. For

).
) € SL(2,R) = G, the stabilizer of i € C under the action of g is the
subgroup K =S0(2

The spin () € s/(2,C). Thus, it is complex, and for good notation, we write
spin (3, C) C sl(2,C). For the real form, we write sping (1) C s[(2,R). Finally,

i 1(C = spi E @ ispin E
spin  2,C ) = sping | 5 | @ isping | 5 |-

For simplicity, in the next section, we use the usual notation sping (1) to be the
real form spin (3,R) of the spin half particle. Note, when i =1,
sping(3) = su(2) and spin (3,C) C sl(2,C).

v
= Tyt
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Iwasawa Decomposition of Spin (%) particle 30

(i) Let 0, t, & be arbitrary real numbers, and put iiky = exp(6Sk),

hdt% = exp(tS;), and hing = exp(£S,). Then, the subgroups #*KDN of Spin

(1) are defined by: hKy = {hks|0 € R}, hD = {hd#|t € R} and
hN = {hn¢|€ € R}. We have:

hcos?  hsing g he? 0
— 2 2 . ,
L ( —hsin 2 hcos% ) = ( 0 he 2

2 2
hohe
hng = ( 0 A ) s
hK = 2 > T hDXR, AN = R.
Any spin (1) particle is uniquely decomposable in the form:
! g
spin( 3 ) = 12 kodf e = exp (B(IS112)) - exp (t(HIS.150) - exp (E(21S:12))-
6.1)

v
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lwasawa decomposition of Lie algebra and Lie group Levels
31

Theorem Il: lwasawa Decomposition of Spin (%) particle

If spin (L) = ( : 0 ) € SL(2,R), then, 8, ¢, in Theorem Il (i) are given by the
relations: o )
a— IC
swlliol=_ 226 6.2
o (ig) = 15 rrms (62)
a2 + c?
exp(t) = —¢—, (6.3)
and
7i®(ab + cd)
- bt cd) 4
é- 32+C2 (6 )
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32

Since

hky = exp(05k) = exp (65, Sk|m)) (6.5)

ceo( (0 1)) =reo(5( % 1)) o

(S0 Sl

n=0
. h( cosg sin%)
- . 0 .
—smi COSE

R
By isomorphism 6 — hiKjy, we obtain: hK &% — = T.
477,

and

hKo
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Moreover,

—_
M8
3|
—~~
~
Q
N
SN—r
3
Il
>t
o
[0
I o
Nl
N———

arlt
n=0 n=0

By isomorphism t — hdé7 we also have: D = R. Now, since (5;)% =0,
S s 1 5
fing = exp (£5.) = hexp (€ 04) = e (IS: ) =1 ( ¢ 5 ).
By matrix multiplication, we have:

(i Z) = B kgdF ne = exp (0|Skl5)) - exp (£(1S2150) - exp (65154 [5)

) cos? h%os%exp (£) &+ R3sing exp (—1)
%) sing 7h3sin§ exp (%) &4 h3cosg exp ( %) :
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yielding

_ 3 E) O o _ 3 (E) in?
a=nh exp(2 C052, c=—hexp 5 sm2,

t 0
e 3 - e .
a /chexp(2+l2)

Hence, |a — ic| = I3 exp (%) , we easily get equations (??) and (?7), and

and

ab+ cd = exp(t)€ (6.7)

from which we can clearly obtain equation (??7). End of the proof.

Now we know that Spin (3) is spanned by two states: {|3 3),(3 ,—2)}. From
equations (??), (??) and (?7?), we can calculate the angular momentum for spin
half integers such as %, 3, 2 and so on--- [Thankappan, 1972].

A question arises: What can the general term (last term) of a spin half integer
be? From a theoretical point of view, this can be useful in the study of particle
rotational forms. We have the following results:
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35

For any spin(2%-1) (fermions) quantum state, where n =1,2,3,..., we have:

(i) 5215, M), = (*52) K2 |5, M) .

(i) S;1S,M), =+ (2%%) h|S, M) where k < 2n, and n=1,2,..., with
k=1,3,5,....
(iii) The n*" possible state of a spin half particle is given by:

M, =25, +1=2n,

where n =1,2,3,.... The quantum state of the fermion is spanned by 2n
states:
2n—1 2n—1 2n—1 2n — k
(57) = (7)) () = (3))

where k =1,3,5,..., with kK < 2n.
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(iv) The ladder operators act as follows:

5 <2n2—1> <2n2—k>> _h\/(k—l)n— <(k—1)4(k—1)>’57M+1>’
(6.8)
(252) -(552) -l (D
(6.9)

Note
5, = 2t —>= Mo _ e (6.10)

2 2
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Theorem IV

For any spin(2%-1), the quantum state of the particle is spanned by 2n states and
there exists orthogonal matrix element S, in the S, matrix which can be
transformed into the classical group SO(2n) with natural numbers n =1,2,3,.. ..
This compact Lie group SO(2n) corresponds to the Dynkin’s root M(D,).

From Lemma Ill, From Lemma ?? we observe that the theorem is true for n = 1.
For spin(2%-1) particle quantum state spanned by 2n states, we consider similar
arguments for Theorem |1, replacing the Sy matrix by the n*" matrix S, and
deducing in the same manner as in Lemma Il to obtain the above Theorem III.
Specifically, from Theorem I, there exists Si, matrix in the S, matrix from
equation 6.10. One can check that these matrices are orthogonal and generate
SO(2n) with n=1,2,3.... For n =1 we have the compact Lie group SO(2) as in

Lemma IlII. Finally, the correspondence to the Dynkin's roots M(D,).
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Proposition Ill [Sugiura, 1977]

For an element g € Sping (1) and 0 € R, let

1
gko = g‘edrz(g,e)”ﬁ(gﬂ)

be the Iwasawa decomposition of gky. If A = 1, then, the following cocycle
conditions hold, for g, g" which are projections in SL(2,R) D Sping (3):
QO (i) (gg')-0=g-(g'-0) (mod4r);
(ii) t(gg’,0)=t(g, 8" -0)+t(g,0);
(iii) g-(0+27) =g -0+ 27 (mod 4r), t(g,0+27) = t(g,0).
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Proposition Ill [Sugiura, 1977]
QIfg= (i 3) then, we have:

) @0\ _ (a—ic)cos % + (—b+ id)sin 2 .
(i) exp (T> " |(a—ic) cos & + (—b+id)sin &’
(i) exp(t(g,0)) =|(a—ic)coss + (—b+ id)sin £|?;

(iii) E(gae) = eXp(—t(g,a)) X
[(ab+ cd)cosf + % (a® — b* + c* — d?)sind];
(iv) d&2 = exp(—t(g,0)).

Francis Atta Howard GROUP-ALGEBRAIC CHARACTERIZATION OF SPIN PARTICLES

A\



Theorem V[Main Result: Particle Decomposition]
Any spin Lie group G can be uniquely decomposed in the form:
G = XXKD°N

where K is compact, D® is a rotational function (d-function), and N is nilpotent
(Ladder operators). We denote by X(a 1) the fine structure constant and all
other translational energy of elementary spin particles.

Fine structure constant

2 _ (ke) (q)2 e —
a” = —(h/ﬂ) ©)’ 137.036...
R 1 —
T3 T
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Proof

We will give a physical interpretation to this theorem. Let us consider the Iwasawa
decomposition of an electron which has a spin half. Suppose an electron is at rest
in a homogeneous magnetic field. Its eigenfunctions do not depend upon its
position. Given u, the magnitude of Bohr magneton and H, the Hamiltonian, one
then obtains the system of equations for (t4,13) as follows

ul(Hy — iH, )5 + Hyta] = Eta
pl(Hx + iHy Yo — Hzpg] = Etp

from which we find that E = £u|H|. If we denote the angle between the field
direction and the z-axis by 6 and normalizes (¢, %) by the way of

[¥al® + |¥sl* = 1. (7.1)

v
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Proof Cont'd

This then corresponds to the determinant of the compact (K) function in the
Iwasawa decomposition, that is, cos? g + sin® g = 1. If one suddenly rotates the

external magnetic field in the z-direction; cos? g is then the fraction of the

electron with moments that are directed parallel to the z-axis and sin’ g is the
fraction of electron with moments that are directed anti-parallel to the z-axis and

vice versa. Consider the subgroup D = {D: (t) |t € R}, with

mm’

rsnm’(t) = rsnm’(t) = dts

D¢ is the rotational function(d-function) and Dz, ,(t) is the Clebsch-Gordon
coefficient. Given the identity

1
exp(itK, ) K, exp(—itK,) = cosh t - K, — 5 sinht - (Ky + K_) (7.2)

which can be defined using the Campbell-Hausdorff formula together with the
SU(1,1) commutation relation.
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Ptoof Cont'd

Taking the matrix element of

K, exp(—itK,) = cosh t exp(—itK, ) K,
1
-5 sinh texp(—itK,)(K; + K_-) (7.3)

between |s, m) and |s, m’), one can easily obtain the recurrence formula for the
d-function. For the finite (25 + 1)-dimensional case, we have:

(' — cosh t - m)d (£) + 5 sinh £ (—/(s — m)(s T m T Dl (1)

2
V(s +m)(s = m+ D)y a(t) =0 (7.4)
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which leads to the factorization of the d-function of SU(1,1):

(1)

B {I‘(s—m—l—l)l‘(s—i—m’—i—l)r 1 .
| FM(s+m+DIi(s—m+1)| T(m—-—m+1)

(cosh (%)) s (sinh (%))mim X Fq (m;tanh2 (%)) (7.5)

where m’ > m. Substituting formula (?7) into (??), we obtain:

(s+m)(s—m+ l)tanh2 (%) Xo F (m — 1:tanh?® (%))

+ cosh™?2 (é) (m' —cosht-m) x, Fy (m;tanh2 (%))

—(m —m+1)(m —m)- x2F (m + 1;tanh? (%)) =0. (7.6)
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proof Cont'd

= [FE=R ) (1)

x (sinh (£ e P —m=m=m" och(t). (7.7)
(s (3)) " P

We note that the form D, , = d3, . (t) = d; and dt% is the Abelian subgroup in
the Iwasawa decomposition.

Finally, for the Nilpotent (N) function say, K in the 2-dimensional non-unitary
representation is the non-compact operator which generates elements of the
parabolic subgroup of SU(1,1).
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Is Spin(n) in Mathematics the same as the Spin(J) in

particle Physics? 46

In mathematics the spin group spin (n) is a double cover of the special orthogonal
group SO (n).

Spin (3)

|

50(3)
however, in particle Physics

SL(3,C) —— Spin (1)

SN

50(3) —— boson,

and similarly,In Mathematics
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Spin (2)

|

SO(2)

while in Physics;

SL(2,C) — Spin (1)

S

SO(2) —— fermion.

The Iwasawa decomposition of the spin half particle into compact, rotational
(Abelian), and nilpotent functions (subgroups) can also be performed for isospins.
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Concluding remarks

In this work,

@ we provided an extension of semi-simplicity of spin particle Lie algebra to the
Lie group level,

@ we showed that a spin particle Lie algebra admits a Clifford algebra, an
almost complex manifold and a spin Lie group structure,

@ we demonstrated that any spin half particle, (resp. integer spin), spin Lie
group is a fourfold, (resp. double), cover of the SO(2n), (resp. SO(2n + 1)),
we also proved that any spin Lie group of a spin particle is connected and
semi-simple,

e we constructed the real Lie algebra of the Spin () particle,

@ we also performed the lwasawa decomposition of the spin half into KDN,

o finally, we applied the angular momentum coupling to the Spin (22-1)
particle and demonstrated that the orthogonal basis transforms into the
SO(2n) one, which is nothing but the Dynkin's root D,,.
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