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We apply inverse scattering theory to a Schro� dinger operator with a regular
reflectionless Po� schl�Teller potential on the line, to arrive at a combinatorial for-
mula for the associated Legendre functions of integer degree. The expansion coef-
ficients in the combinatorial formula are identified as dimensions of irreducible
representations of gl(N), where N corresponds to the degree of the associated
Legendre function. As an application, combinatorial formulas for the zonal spheri-
cal functions on the real hyperboloids H 2N+3, 1=SO0 (2N+3, 1; R)�SO0 (2N+
2, 1; R), H 1, 2N+3

+ =SO0 (2N+3, 1; R)�SO(2N+3; R) and the sphere S 2N+3=
SO(2N+4; R)�SO(2N+3; R) are presented. � 2000 Academic Press

1. INTRODUCTION

It is known that the Jost eigenfunctions of the one-dimensional
Schro� dinger operator with a regular Po� schl�Teller potential can be
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conveniently written in terms of associated Legendre functions (see e.g.,
[T, Chap. 4.19; F1, Problem 39; AGI; and DJ, Chap. 3.2]). The case of integer-
degree associated Legendre functions corresponds in this connection to the
situation of a reflectionless Po� schl�Teller potential.

In this paper, we will employ inverse scattering machinery [SCM, DT,
AS1, NMPZ] to reconstruct��for the reflectionless case��both the poten-
tial and the Jost eigenfunction from the spectral data of the Po� schl�Teller
potential. This approach leads us to a combinatorial representation for the
integer-degree associated Legendre functions, in which the expansion coef-
ficients turn out to be dimensions of irreducible representations of gl(N).
Here the dimension N corresponds to the degree of the associated Legendre
function under consideration.

Associated Legendre functions of integer degree N may be used
to express the zonal spherical functions [H1, H2, HS] on the real
hyperboloids H2N+3, 1=SO0 (2N+3, 1; R)�SO0 (2N+2, 1; R), H 1, 2N+3

+ =
SO0 (2N+3, 1; R)�SO(2N+3; R) and the sphere S2N+3=SO(2N+4; R)�
SO(2N+3; R), respectively. Hence, as a corollary, we also find com-
binatorial formulas for the zonal spherical functions on these rank-one
symmetric spaces.

The paper is organized as follows. Section 2 serves as a reminder of some
characteristics of the Schro� dinger equation with a regular Po� schl�Teller
potential on the line; in particular, its solution in terms of associated
Legendre functions is recalled. In Section 3 we have collected some for-
mulas from the inverse scattering theory for one-dimensional Schro� dinger
operators with reflectionless (Bargmann) potentials; these formulas permit
one to reconstruct both the potential (via the Hirota formula [H3]) and
the Jost eigenfunction (via the Sato formula [S, SS, DKJM, SW, OSTT])
from the spectral data. A proof of the Sato reconstruction formula for the
reflectionless Jost function by means of inverse scattering theory can be
found in Appendix A. The derivation given there complements the known
inverse-scattering proof of the Hirota reconstruction formula for the corre-
sponding reflectionless Schro� dinger potential [SCM, AS1]. Plugging the
spectral data of the Po� schl�Teller potential (from Section 2) into the Sato
formula for the Jost eigenfunction (from Section 3), produces a com-
binatorial formula for of the integer-degree associated Legendre functions;
some salient properties of this combinatorial formula are analyzed in
Section 4. Finally, in Section 5, we apply our combinatorial formula for the
associated Legendre functions to arrive at analogous explicit combinatorial
representations for the zonal spherical functions on certain hyperboloids
and spheres.
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2. THE SCHRO� DINGER EQUATION WITH A REGULAR
PO� SCHL�TELLER POTENTIAL

The Schro� dinger equation with a regular Po� schl�Teller potential on
the line is given by (see [T, Chap. 4.19; F1, Problem 39; AGI; and DJ,
Chap. 3.2])

\ d2

dx2+
N(N+1)
cosh2(x)

&z2+ 9N(x, z)=0, &�<x<+�. (2.1)

Here N denotes a nonnegative coupling parameter determining the strenght
of the potential and z is a (generic complex) spectral parameter. To solve
Eq. (2.1) it is convenient to perform a change of variables of the form
y=tanh (x). This substitution transforms the Schro� dinger equation into
the differential equation for the associated Legendre functions of order z
and degree N:

9N (x, z)=,N (tanh (x), z), (2.2a)

\(1& y2)
d2

dy2&2y
d
dy

+N(N+1)&
z2

(1& y2)+ ,N ( y, z)=0 (2.2b)

(cf. [GR, Eq. 8.700.1]). Two linearly independent solutions of Eq. (2.2b)
are given by the associated Legendre functions of the first and second kind,
respectively. For our purposes it suffices to consider only the case of an
associated Legendre function of the first kind Pz

N ( y). In terms of this func-
tion the solution to the original Schro� dinger equation in (2.1) becomes

9N (x, z)=1 (1&z) Pz
N (tanh (x))

=\1+tanh (x)
1&tanh (x)+

z�2

F \&N, N+1; 1&z;
1&tanh (x)

2 +
=(ex+e&x)z F \N+1&z, &N&z; 1&z;

1&tanh (x)
2 +

=
exp(zx)

(1+e&2x)N F (&N, &N&z; 1&z; &e&2x), (2.3)

where we have chosen the normalization such that no gamma-function fac-
tors appear in front of the hypergeometric-series representations. The for-
mula on the second line of Eq. (2.3) corresponds to the standard hyper-
geometric representation for the associated Legendre function Pz

N ( } ) (cf.
[GR, Eq. 8.704]); the formulas on the third and fourth lines are obtained
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from this standard representation by means of linear transformation for-
mulas for the Gauss hypergeometric function. (Specifically, one passes from
the second line to the third via the transformation [GR, Eq. 9.131.1 (3rd
line)] and from the third line to the fourth via the transformation [GR,
Eq. 9.131.1 (2nd line)].)

From now on we shall assume (unless explicitly stated otherwise) that
the coupling parameter N is in fact a nonnegative integer. In this situation
the hypergeometric series on the last line of Eq. (2.3) terminates, and we
can write more explicitly

9N (x, z)=exp(zx)
�N

m=0 C N
m (z) ( N

m) e&2mx

�N
m=0 ( N

m) e&2mx , (2.4a)

C N
m (z)= `

m

j=1
\z+N+1& j

z& j + (2.4b)

(with the convention that empty products are equal to 1).
From Eqs. (2.4a) and (2.4b) it is immediate that 9N (x, z) has the follow-

ing plane-wave asymptotics for x � \�:

9N (x, z) � {
exp(zx) for x � �,

(2.5)
`
N

j=1
\z+ j

z& j+ exp(zx) for x � &�.

For z=&j, j=1, ..., N, the order of the asymptotics for x � &� is lower
than the generic value O(ezx). These values of the spectral parameter z con-
stitute the discrete spectrum of the Schro� dinger operator: the correspond-
ing (bound-state) wave functions are square integrable. (The square
integrability of 9N (x, &j), j=1, ..., N, is immediate from Eqs. (2.4a) and
(2.4b).) For later use, we will compute the normalization constants of the
bound-state wave functions

&j=\|
�

&�
9 2

N (x, &j) dx+
&1

= j \ 2j
j +\

N+ j
N& j+ , j=1, ..., N. (2.6)

Remark 2.1. To infer the normalization formulas in (2.6), it is helpful
to note that

9N (x, &j)=j! P& j
N (tanh (x))

=(&1) j j!
(N& j)!
(N+ j)!

P j
N (tanh (x))
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(cf. [GR, Eq. 8.737.1]) and that P j
N (&y)=(&1)N+ j P j

N ( y) (cf. [GR,
Eq. 8.737.2]). With these properties of the associated Legendre function in
mind, Eq. (2.6) is immediate from the integration formula �1

0 (P j
N ( y))2

(1& y2)&1 dy=(2j)&1(N+ j)!�(N& j)! (cf. [GR, Eq. 7.122.1]).

Remark 2.2. For a general nonnegative (not necessarily integer-valued)
coupling parameter N, the asymptotics of the wave function 9N (x, z) for
x � \� follows from the fourth line of Eq. (2.3) and the F (&, &;
&; !) � F (&, &; &; 1�!) hypergeometric transformation formula (cf.
[GR, Eq. 9.132.2])

9N (x, z)=a(z) exp(zx)
F (&N, &N+z; 1+z; &e2x)

(1+e2x)N

&b(&z) exp(&zx)
F (&N, &N&z; 1&z; &e2x)

(1+e2x)N ,

with

a(z)=
1(1&z) 1 (&z)

1 (1+N&z) 1 (&N&z)
=\1&

sin2(?N)
sin2(?z) +

1 (1+N+z) 1(&N+z)
1 (1+z) 1(z)

,

b(z)=&
1(1+z) 1 (&z)

1 (1+N) 1 (&N)
=&

sin(?N)
sin(?z)

(where the reflection relation 1 (!) 1 (1&!)=?�sin(?!) was used to rewrite
the products of gamma functions). We read-off the asymptotics

9N (x, z) � {exp(zx)
a(z) exp(zx)&b(&z) exp(&zx)

for x � �,
for x � &�.

(2.7)

For N integer we have that b(z)=0, i.e., the potential is reflectionless and
the asymptotics in (2.7) reduces to that of (2.5).

3. THE HIROTA AND SATO FORMULAS

The qualitative behavior of the solutions of the Schro� dinger equation
with a regular Po� schl�Teller potential is characteristic for that of more
general Schro� dinger equations with rapidly decaying potentials (see e.g.,
[SCM, DT, AS1, NMPZ]). In particular, for a potential u # S(R) (i.e., the
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potential u(x) is assumed to be real, smooth, and integrable against poly-
nomials in x) the solutions of the Schro� dinger equation

\ d2

dx2+u(x)&z2+ 9(x, z)=0, &�<x<+� (3.1)

are asymptotically free: 9(x, z) � :\ (z) ezx+;\ (z) e&zx for x � \�.
The solution of (3.1) with plane-wave asymptotics of the form exp(zx),
x � �, is called the Jost solution (of the first kind). One has

9jost (x, z) � {exp(zx)
a(z) exp(zx)&b(&z) exp(&zx)

for x � �,
for x � &�.

(3.2)

The quotient r(z)=b(z)�a(z) is referred to as the reflection coefficient;
when b(z)=r(z)=0 the potential is said to be reflectionless. The zeros of
a(z) on the negative real axis correspond to the discrete spectrum of the
Schro� dinger operator; for these values of the spectral parameter z the Jost
function is square integrable. For potentials u # S(R), there are at most a
finite number of such square integrable eigenfunctions.

Let &}1 , ..., &}N be the zeros of a(z) and let &1 , ..., &N denote the corre-
sponding normalization constants

&j=\|
�

&�
9 2

jost (x, &} j) dx+
&1

, j=1, ..., N. (3.3)

The numbers }j , &j and the reflection coefficient r(z)=b(z)�a(z) are referred
to as the spectral data of the potential. A deep fundamental result from the
inverse scattering theory for one-dimensional Schro� dinger equations states
that, for a Schwartz class potential u # S(R), both the potential u(x) and
the Jost solution 9jost(x, z) can be completely recovered from the spectral
data (see e.g., [SCM, DT, AS1, NMPZ]).

For reflectionless (or Bargmann) potentials the reconstruction of the
potential and Jost function from the discrete spectrum and the normaliza-
tion constants is in fact completely explicit. Specifically, the Bargmann
potential is given by the Hirota Formula

u(x)=2
d2

dx2 log {(x) (3.4a)

{(x)= :
J/[1, ..., N]

`
j # J

& j

2}j
`

j<k
j, k # J \

} j&}k

} j+}k+
2

exp \&2 :
j # J

} jx+ (3.4b)
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and the corresponding Jost function is given by the Sato Formula

9jost (x, z)=exp(zx)

_

:
J/[1, ..., N]

`
j # J

& j

2}j \
z+}j

z&} j+ `

j<k
j, k # J \

}j&}k

}j+}k+
2

exp \&2 :
j # J

}jx+
:

J/[1, ..., N]

`
j # J

&j

2}j
`

j<k
j, k # J \

}j&}k

}j+}k+
2

exp \&2 :
j # J

} j x+
.

(3.5)

The derivation of the Hirota formula for the reflectionless potential by
means of inverse scattering theory is quite standard [SCM, DT, AS1,
NMPZ]. The derivation of the Sato formula for the corresponding Jost
function by means of inverse scattering methods, however, does not appear
to be standard. We have therefore included this derivation in Appendix A.

Remark 3.1. The Hirota and Sato formulas express the fact that a
Schro� dinger equation (3.1) with potential of the Hirota form (3.4a), (3.4b)
has a Jost solution given by the Sato formula (3.5). The proof by inverse
scattering (cf. Appendix A) initially covers only the case of positive spectral
data }j , &j . However, it is clear that the Schro� dinger equation (3.1) with a
Hirota potential and Sato wave function then in fact holds as a rational
identity in }j , &j and exp(&2}jx).

Remark 3.2. Both the Hirota formula and the Sato formula have their
origin in the theory of nonlinear integrable wave equations of KdV type
[H3, S, SS, DKJM, SW, OSTT]. The usual proof that the Sato wave func-
tion solves the Schro� dinger equation with Hirota potential uses geometric
and�or representation-theoretic methods [S, SS, DKJM, SW]. To make
the contact with this previous literature more transparent, it is useful to
introduce the (KdV N-soliton) tau function

{ (%1 , ..., %N)= :
J/[1, ..., N]

`

j<k
j, k # J \

} j&}k

}j+}k+
2

`
j # J

n je&2%j. (3.6)

The Sato theory, developed (mainly) by the Kyoto school [S, SS, DKJM,
SW], then states that the Schro� dinger equation (3.1) with a (KdV
N-soliton) potential of the Hirota form

uhirota (x)=2
d2

dx2 log { (}1x, ..., }Nx) (3.7)
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is solved by the Sato wave function

9sato(x, z)=exp(zx)

_

{\}1x& :
�

m=1, m odd

1
m \}1

z +
m

, ..., }N x& :
�

m=1, m odd

1
m \}N

z +
m

+
{ (}1x, ..., }N x)

.

(3.8)

After the parametrization nj=&j �(2}j), the Hirota potential in (3.7) goes
over in the potential of (3.4a), (3.4b), and the Sato wave function in (3.8)
passes over to the wave function of (3.5) in view of the fact that

:
�

m=1, m odd

1
m \}j

z +
m

=
1
2

log \z+}j

z&} j+ ( |z|>}j). (3.9)

Remark 3.3. The inverse-scattering approach towards the Sato for-
mula, adopted in Appendix A, yields a parametrization of the reflectionless
Sato Jost function in terms of the spectral data (i.e., the eigenvalues and
normalization constants). It is indeed clear from the explicit formula in
(3.5) that the spectral values z=&}j , j=1, ..., N correspond to the discrete
spectrum of the Schro� dinger operator, as at these values for z the wave
function becomes exponentially decaying for x � \� (and hence square-
integrable). The parameters &j , j=1, ..., N correspond to the associated
normalization constants (cf. Eq. 3.3). We therefore conclude that the
following nonobvious integration formulas hold for the reflectionless Jost
function 9jost (x, z) given by the Sato formula in (3.5):

|
�

&�
9 2

jost (x, &} j) dx=1�& j , j=1, ..., N (3.10)

(i.e., these integration formulas follow from the explicit reconstruction of
the Jost function 9jost (x, z) from the spectral data, given in Appendix A).

4. A COMBINATORIAL REPRESENTATION OF THE
INTEGER-DEGREE ASSOCIATED LEGENDRE FUNCTION

If we plug the spectral data of the Po� schl�Teller potential into the Sato
formula for the reflectionless Jost function, then we end up with a com-
binatorial expression for the (renormalized) associated Legendre functions
of integer degree.
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Proposition 4.1. Let 9N (x, z)=1 (1&z) Pz
N (tanh (x)), where Pz

N ( y)
denotes the associated Legendre function of degree N # N* and order
z # C"N*. Then we have that

9N(x, z)=exp(zx)

_

:
J/[1, ..., N]

`
j # J \

z+ j
z& j+ `

j # J, k � J }
j+k
j&k} exp \&2x :

j # J

j+
:

J/[1, ..., N]

`
j # J, k � J } j+k

j&k} exp \&2x :
j # J

j+
(where, by convention, empty products are equal to 1).

Proof. For the Schro� dinger equation with a regular Po� schl�Teller
potential, the values of the spectral parameter corresponding to the discrete
spectrum are given by z=&}j , j=1, ..., N, with }j= j (see Section 2.). The
values of the associated normalization constants read (cf. Eq. 2.6)

&j= j \2j
j + \

N+ j
N& j+=2j `

k{j
1�k�N } j+k

j&k} .

Substitution of these spectral data into the Sato formula (3.5), produces a
solution to the Po� schl�Teller Schro� dinger equation (2.1) of the form stated
by the proposition. The solution in question has the same Jost-function
asymptotics as the previously given solution of Section 2. in terms of
associated Legendre functions (cf. Eqs. (2.3) and (2.5)). Hence, both solu-
tions coincide. K

It turns out that the expansion coefficients of the form >j # J, k � J

|( j+k)�( j&k)| appearing in the combinatorial formula of Proposition 4.1
are in fact integers. The following proposition identifies these numbers as
dimensions of irreducible representations of the Lie algebra gl(N). The
weights�partitions of the representations at issue are easiest characterized in
terms of their Frobenius symbol (see e.g., [M, Chap. I.1] and Remark 4.2
below).

Proposition 4.2. Let J=[1� j1< j2< } } } < jr�N] and let *J denote
the partition with Frobenius symbol ( jr , jr&1 , ..., j1 | jr&1, jr&1&
1, ..., j1&1). Then the dimension of the irreducible representation of the Lie
algebra gl(N) corresponding to the highest weight *J is given by

dim V gl(N)
*J

= `

k # [1, ..., N]"J
j # J } j+k

j&k} .
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Proof. The dimension of the irreducible representation of gl(N) associated
to a partition * is given by the hook formula (see e.g., [F2, Chap. 4.3])

dim V gl(N)
* = `

(i, j) # * \
N+c(i, j)

h(i, j) + , (4.1)

where c(i, j)= j&i and h(i, j)=*i+*$j&i& j+1. (Here the product in the
hook formula is meant over all boxes (i, j) in the Young diagram of * and
the partition *$ denotes the conjugate of *, i.e., the partition corresponding
to the transpose of the Young diagram of *.)

Let us write dJ (N)=dim V gl(N)
*J

and nJ (N)=>j # J, k � J |( j+k)�( j&k)|.
We will now use the hook formula to demonstrate that

dJ (N)
dJ$ (N)

=
nJ (N)
nJ$ (N )

, (4.2)

where J$=J"[ jr]=[ j1 , ..., jr&1]. From this relation the statement of the
proposition is immediate by induction on the cardinality r of the index set
J, starting from the initial values for r=0 given by d< (N)=n< (N)=1.

To infer the relation in (4.2), it is useful to observe that the partitions *J

and *J$ differ by the hook ( jr | jr&1) formed by the first row and column
of *J . Consequently, the hook formula in (4.1) entails the following expres-
sion for the l.h.s. of (4.2)

dJ (N)
dJ$ (N)

=
N+c(1, 1)

h(1, 1)
`

1<i� jr
\N+c(i, 1)

h(i, 1) + `
1< j� jr+1

\N+c(1, j)
h(1, j) +

=
1

2jr

(N+ jr)!
(N& jr)!

`
1<i� jr

h&1(i, 1) `
1< j� jr+1

h&1(1, j)

=
1

2( jr!)2

(N+ jr)!
(N& jr)!

`
1�s<r \

jr& js

jr+ js+
2

,

where we have used that for the partition *J

`
1< j� jr+1

h(1, j)= jr `
1<i� jr

h(i, 1)= jr ! `
1�s<r \

jr+ js

jr& js +
(cf. Eq. 4.4 below). Moreover, the r.h.s. of (4.2) readily produces

nJ (N)
nJ$ (N)

= `
k � J }

jr+k
jr&k} `

j # J$
} j& jr

j+ jr }= `

k{ jr
1�k�N } jr+k

jr&k} `
j # J$

\ jr& j
jr+ j+

2

=
1

2( jr!)2

(N+ jr)!
(N& jr)!

`
1�s<r \

jr& js

jr+ js +
2

.
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(In the above formulas it is understood that the for r=1 empty product of
the form >1�s<r( jr& js)

2�( jr+ js)
2 is interpreted as 1.) Hence, we have

(4.2) and thus (by induction on r) dJ (N)=nJ (N). K

The interpretation of the expansions coefficients as dimensions of
irreducible representations of gl(N) permits one to recast the combinatorial
formula of Proposition 4.1 in terms of Schur functions. Let us to this end
recall that the Schur function s* (x)=s* (x1 , ..., xN), associated to a parti-
tion *=(*1 , ..., *N), is given explicitly by [M, Chap. I.3]

s* (x)=
det[x\j+*j

k ]1� j, k�N

det[x\j
k ]1� j, k�N

(4.3a)

=

:
_ # SN

(&1)_x\1+*1
_1

} } } x\N+*N
_N

:
_ # SN

(&1)_x\1
_1

} } } x\N
_N

, (4.3b)

with \=(N&1, N&2, ..., 1, 0).

Corollary 4.3. The renormalized associated Legendre function 9N (x, z)
=1 (1&z) Pz

N(tanh (x)), with N # N* and z # C"N*, can be written
compactly in terms of Schur functions as follows

9N (x, z)=exp(zx)
�*c* (z) s* (e&x1N)

�*s* (e&x1N)
.

Here the range of the summations in numerator and denominator is over all
partitions *=(*1 , ..., *N) with a Frobenius symbol of the form (:1 , ..., :r |
:1&1, ..., :r&1) with :1�N (and r=0, ..., N). Furthermore, the coefficient
function c*(z) is defined by

c* (z)=\z+:1

z&:1+ } } } \z+:r

z&:r +
and the vector 1N represents the N-dimensional vector with unit components.

Proof. The Weyl character formula for GL(N) (see e.g., [FH])
produces, when specialized to the identity element, the well-known (Weyl-)
dimension formula dim(Vgl(N)

* )=s* (1N). From this, and the expression for
the dimension in Proposition 4.2, it follows that the formula stated in the
corollary reduces to that of Proposition 4.1 upon employing the fact that
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the Schur function s* (x), associated to a partition * with Frobenius symbol
(:1 , ..., :r | :1&1, ..., :r&1), is homogeneous of degree |*|=*1+ } } } +*N

=2(:1+ } } } +:r). K

Remark 4.1. In Proposition 4.1 and Corollary 4.3 the combinatorial
formula is��for reasons of convenience��formulated only for positive values
of the degree N. However, the stated formulas in fact also cover the trivial
case N=0 (this corresponds to the free Schro� dinger equation with poten-
tial u(x)=0). Indeed, for N=0 the combinatorial formula reduces to the
well-known relation 1 (1&z) Pz

0 (tanh (x))=exp(zx) (cf. [GR, Eq. 8.753.1]).

Remark 4.2. In Proposition 4.2 and Corollary 4.3 we used the notation
of Frobenius symbols [M, Ch. I.1] to characterize our partitions. Let
*=(*1 , ..., *N) be a partition (so the components *j are integers such that
*1�*2� } } } �*N�0) and let us assume that the diagonal of the corre-
sponding Young diagram consist of say r boxes (so 0�r�N). Then * is
completely characterized by the numbers :j=*j& j (counting the number
of boxes in the jth row to the right of the diagonal box ( j, j)) and
;j=Card[k | *k� j] (counting the number of boxes in the jth column
below the diagonal box ( j, j)), with j=1, ..., r. Reversely, to every pair of
r (�N) strictly decreasing nonnegative integers :1> } } } >:r�0 and
N>;1> } } } >;r�0 there corresponds a unique partition *=(*1 , ..., *N).
One writes *=(:1 , ..., :r | ;1 , ..., ;r), which is referred to as the Frobenius
symbol of *.

For example, a partition *=(*1 , ..., *N) with Frobenius symbol of the
form (:1 , ..., :r | :1&1, ..., :r&1) corresponds to the partition

*=(:1+1, :2+2, ..., :r+r, r, ..., r
:r&1

, r&1, ..., r&1

:r&1&:r&1

, ..., 1, ..., 1
:1&:2&1

, 0, ..., 0
N&:1

)

(4.4)(cf. Fig. 1).

Remark 4.3. If we substitute the spectral data of the reflectionless
Po� schl�Teller potential N(N+1)�cosh2(x) in Eqs. (3.4a) and (3.4b), then

FIG. 1. The Frobenius symbol and Young diagram of the partition (8, 6, 5, 3, 2, 1, 1, 0, ..., 0).
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we arrive at a representation of Hirota form for the potential under con-
sideration. In other words, this produces an expression for the
Po� schl�Teller potential in terms of the second-order logarithmic derivative
of the tau function. Integrating twice leads us to the identity

(1+e&2x)N(N+1)�2= :
J/[1, ..., N]

`
j # J, k � J } j+k

j&k} exp \&2x :
j # J

j+
=:

*

s* (e&x1N), (4.5)

where on the second line the summation is over all partitions *=(*1 , ..., *N)
with a Frobenius symbol of the form (:1 , ..., :r | :1&1, ..., :r&1) with :1�
N and r=0, ..., N. (The integration constants are determined by the
asymptotics for x � � and the formula on the second line follows from
that on the first line by the same reasoning as in the proof of
Corollary 4.3.)

This formula may be viewed as the CN-type Weyl denominator formula
in the appearance [M, p. 79]

`
1� j�N

(1+ y2
j ) `

1� j<k�N

(1+ yj yk)=:
*

s* ( y1 , ..., yN) (4.6)

specialized to the diagonal y=e&x1N (where the range of the summation
on the r.h.s. of Eq. (4.6) is the same as on the second line of Eq. (4.5)).

Remark 4.4. If the denominator of the hypergeometric representation
(2.4a), (2.4b) for the renormalized associated Legendre function
9N (x, z)=1 (1&z) Pz

N (tanh (x)), viz. (1+e&2x)N, is compared with the
denominator of the combinatorial representation of Proposition 4.1, viz.
(1+e&2x)N(N+1)�2 (cf. Eq. (4.5)), then one observes that both denominators
differ by a factor (1+e&2x)N(N&1)�2. Thus, since both formulas represent
the function 9N (x, z), the corresponding numerators must also differ by
that same factor and we have

:
J/[1, ..., N]

`
j # J \

z+ j
z& j+ `

j # J, k � J } j+k
j&k} exp \&2x :

j # J

j+
=(1+exp(&2x))N(N&1)�2 :

N

m=0

`
m

j=1
\z+N+1& j

z& j +\N
m+ exp(&2mx).

(4.7)

In other words, one descends from the combinatorial representation of
Proposition 4.1 to the more conventional hypergeometric representation
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(2.4a), (2.4b) by dividing out a common factor (1+e&2x)N(N&1)�2 in the
numerator and denominator. The price paid for such condensation of the
formula for the associated Legendre function is, of course, that the com-
binatorial structure is lost.

Remark 4.5. It is well-known that the dimensions of irreducible
representations of gl(N) admit a combinatorial interpretation in terms of
the number of semi-standard Young tableaux of given shape (see e.g. [F2,
Chap. 4.3]). Hence, as a consequence of Proposition 4.2, the expansion
coefficients appearing in the combinatorial formula of Proposition 4.1 also
admit such combinatorial interpretation. Indeed, one concludes from
Proposition 4.2 that the integer >j # J, k � J |( j+k)�( j&k)| associated to a
given index set J=[1� j1< } } } < jr�N] amounts to the number of semi-
standard Young tableaux of shape *J=( jr , ..., j1 | jr&1, ..., j1&1) with
entries not exceeding N. In other words, the expansion coefficient counts
the number of ways in which the boxes of the Young diagram correspond-
ing to the partition *J can be assigned numbers from 1 to N, in such a way
that the numbers strictly increase along a column (from top to bottom)
and do not decrease along a row (from left to right).

Remark 4.6. It turns out possible to generalize the dimension formula
of Proposition 4.2 somewhat. Let us to this end denote by * (n)

J the partition
in N parts with a Frobenius symbol of the form ( jr+n, ..., j1+n | jr&
1, ..., j1&1), where n is a nonnegative integer and J=[1� j1< } } } <
jr�N]. We then have that the irreducible representation of gl(N)
associated to * (n)

J has a dimension given by

dim V gl(N)
*J

(n) = `

k # [1, ..., N]"J
j # J } n+ j+k

j&k } . (4.8)

For n=0 this reduces to the statement of Proposition 4.2. The proof of the
dimension formula formulated there also applies (with obvious minor
modifications) to the extension in (4.8). One concludes in particular that
the r.h.s. of (4.8) is integer-valued for arbitrary n # N.

5. COMBINATORIAL FORMULAS FOR ZONAL SPHERICAL
FUNCTIONS ON REAL ODD-DIMENSIONAL HYPERBOLOIDS

AND SPHERES.

In this section we apply the formula of Proposition 4.1 to arrive at
combinatorial expressions for the zonal spherical functions on I: the
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noncompact pseudo-Riemannian symmetric space SO0 (2N+3, 1; R)�
SO0 (2N+2, 1; R), II: the noncompact Riemannian symmetric space
SO0 (2N+3, 1; R)�SO(2N+3; R), and III: the compact Riemannian sym-
metric space SO(2N+4; R)�SO(2N+3; R). These symmetric spaces may
be realized explicitly as I: the one-sheeted hyperboloid H2N+3, 1=[x #
R2N+4 | x2

1+ } } } +x2
2N+3&x2

2N+4=1], II: the upper half (say) H 1, 2N+3
+ =

[x # R2N+4 | x2
1&x2

2& } } } &x2
2N+4=1, x1>0] of the two-sheeted hyper-

boloid H1, 2N+3=[x # R2N+4 | x2
1&x2

2& } } } &x2
2N+4=1], and III: the

sphere S2N+3=[x # R2N+4 | x2
1+ } } } +x2

2N+4=1], respectively.
The zonal spherical functions are eigenfunctions of the radial part of the

Laplace-Beltrami operator on the symmetric space. For the three cases
under consideration, this gives rise to the following differential equations
for the zonal spherical functions ,N [H1, H2, HS].

Case I. H2N+3, 1=SO0 (2N+3, 1; R)�SO0 (2N+2, 1; R)

\ d2

dx2+2(N+1) tanh (x)
d

dx
+(N+1)2&z2+ , (1)

N (x, z)=0, &�<x<+�,

(5.1)

Case II. H 1, 2N+3
+ =SO0(2N+3, 1; R)�SO(2N+3; R)

\ d2

dx2+2(N+1) coth (x)
d

dx
+(N+1)2&z2+ , (2)

N (x, z)=0, 0<x<+�,

(5.2)

Case III. S2N+3=SO(2N+4; R)�SO(2N+3; R)

\ d2

dx2+2(N+1) cot(x)
d

dx
+n(n+2N+2)+ , (3)

N (x, n)=0, 0<x<?.

(5.3)

Here z is a complex spectral parameter and n denotes a discrete integer-
valued spectral parameter. (For the noncompact pseudo-Riemannian sym-
metric space of Case I the Laplace�Beltrami operator has both continuous
and discrete spectrum, whereas for the Riemannian symmetric spaces of
Case II (noncompact) and Case III (compact) the spectrum is completely
continuous in the noncompact and completely discrete in the compact
case.) By a variable substitution of the form y=&sinh2(x) (Cases I and II )
or y=sin2(x) (Case III), the second-order differential equations (5.1)�(5.3)
transform to Gauss hypergeometric equations in y. This leads one to the
following hypergeometric representations for the (unnormalized) zonal
spherical functions [H1, H2, HS]
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Case I. H2N+3, 1=SO0 (2N+3, 1; R)�SO0 (2N+2, 1; R)

, (1)
N, even(x, z)=F \N+1+z

2
,

N+1&z
2

;
1
2

; &sinh2(x)+ (5.4a)

, (1)
N, odd (x, z)=sinh(x) F \1+

N+z
2

, 1+
N&z

2
;

3
2

; &sinh2(x)+ , (5.4b)

Case II. H 1, 2N+3
+ =SO0 (2N+3, 1; R)�SO(2N+3; R)

, (2)
N (x, z)=F \N+1+z

2
,
N+1&z

2
; N+

3
2

; &sinh2(x)+ , (5.5)

Case III. S2N+3=SO(2N+4; R)�SO(2N+3; R)

, (3)
N (x, n)=F \&

n
2

,
n
2

+N+1; N+
3
2

; sin(x)+
=F \&n, n+2(N+1); N+

3
2

; sin2 \x
2++. (5.6)

(The differential equation for the pseudo-Riemannian zonal spherical func-
tion of Case I (cf. Eq. (5.1)) is regular on the real line &�<x<�. Con-
sequently, one has two independent regular solutions to the eigenvalue
equation of the Laplace�Beltrami operator. For the Riemannian Cases II
and III, on the other hand, x=0 is a (regular) singular point of the dif-
ferential equation (cf. Eqs. (5.2), (5.3)). Hence, in these cases one only has
one regular solution. In the compact Case III, there is furthermore a
(regular) singularity at x=?. Requiring regularity of the solution also at
this second singular point gives rise to the discretization of the spectral
variable.) The following three propositions provide a combinatorial
representation for the zonal spherical functions (5.4a), (5.4b) (Case I), (5.5)
(Case II, and (5.6) (Case III).

Proposition 5.1 (Case I. H2N+3, 1=SO0 (2N+3, 1; R)�SO0 (2N+2, 1; R))
Let N # N* and let z # C"N. Then one has that

2z1 \1+z+N
2 + 1 \z&N

2 +
2N+11 \1

2+ 1 (z)
F \N+1+z

2
,

N+1&z
2

;
1
2

; &sinh2(x)+
=(8 (1)

N (x, z)+8 (1)
N (&x, z))
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and

2z1 \1+
z+N

2 + 1 \1+z&N
2 +

2N+11 \3
2+ 1(z)

sinh(x) F \1+
N+z

2
, 1+

N&z
2

;
3
2

; &sinh2(x)+
=(8(1)

N (x, z)&8(1)
N (&x, z)),

where

8 (1)
N (x, z)=exp((z&N&1) x)

_

:
J/[1, ..., N]

`
j # J \

z+ j
z& j+ `

j # J, k � J } j+k
j&k} exp \&2x :

j # J

j+
:

J/[1, ..., N+1]

`
j # J, k � J } j+k

j&k} exp \&2x :
j # J

j+
=exp((z&N&1) x)

�* c* (z) s* (e&x1N)
�* s* (e&x1N+1)

.

Here, in the expression for 8 (1)
N (x, z) in terms of Schur functions s*(x)

written on the last line, the notation is in correspondence with that of
Corollary 4.11. The summation in the numerator is over all partitions
*=(*1 , ..., *N) with Frobenius symbol of the form (:1 , ..., :r | :1&1, ..., :r&1)
(0�r�N) and parts *j not exceeding N+1 (i.e., :1�N). The summation in
the denominator is over all partitions *=(*1 , ..., *N+1) with a Frobenius
symbol of the form (:1 , ..., :r | :1&1, ..., :r&1) (0�r�N+1) and parts *j

not exceeding N+2 (i.e., :1�N+1). Furthermore, the coefficient function
c*(z) is given by

c* (z)=\z+:1

z&:1+ } } } \z+:r

z&:r + ,

and the vectors 1N and 1N+1 represent N- and N+1-dimensional vectors
with all components equal to 1, respectively.

Proof. One has that

9N (x, z)=1 (1&z) Pz
N (tanh (x))

=
(i)

(ex+e&x)z F \N+1&z, &N&z; 1&z;
1&tanh (x)

2 +
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=
(ii)

(ex&e&x)z cothN+1(x) F \N+1+z
2

,
N+1&z

2
; 1&z; &

1
sinh2(x)+

=
(iii) ceven coshN+1(x) F \N+1+z

2
,

N+1&z
2

;
1
2

; &sinh2(x)+
+codd coshN+1(x) sinh(x) F \1+

N+z
2

, 1+
N&z

2
;

3
2

; &sinh2(x)+ ,

with

ceven=
2z1 (1�2) 1 (1&z)

1 \1+
N&z

2 + 1 \1&N&z
2 +

=2z&1

1 \1+z+N
2 + 1 \z&N

2 +
1 \1

2+ 1 (z)
,

codd=
2z1 (&1�2) 1 (1&z)

1 \1+N&z
2 + 1 \&N&z

2 +
=2z&1

1 \1+
z+N

2 + 1 \1+z&N
2 +

1 \3
2+ 1 (z)

.

Here we have used: (i) the hypergeometric representation for the associated
Legendre function on the third line of Eq. (2.3), (ii) the quadratic hyper-
geometric F(&, &; &; !) � F(&, &; &; 4!(!&1)�(1&2!)2) transformation
formula [AS2, Eq. 15.3.29], and (iii) the linear hypergeometric F(&, &;
&; !) � F(&, &; &; 1�!) transformation formula [GR, Eq. 9.132.2].
We have furthermore employed the reflection property 1 (!) 1 (1&!)=
?�sin(?!) to rewrite the products of gamma functions appearing in the
normalization constants ceven and codd . (At this point one also uses that
N is an integer.)

From the above expressions one reads-off hypergeometric representa-
tions for the even and odd (in the variable x) component of the normalized
associated Legendre function 9N (x, z). Division by (2 cosh(x))N+1 and
plugging in the combinatorial formula for 9N (x, z) from Proposition 4.1�
Corollary 4.3 then entails the formulas stated by the proposition. Indeed,
it is immediate from the combinatorial formula of Proposition 4.1�
Corollary 4.3, combined with Eq. (4.5), that 9N (x, z)�(2cosh(x))N+1=
8(1)

N (x, z). K

Proposition 5.2 (Case II: H1, 2N+3
+ =SO0 (2N+3, 1; R)�SO(2N+3; R)).

Let N # N* and let z # C"N. Then one has that

78 VAN DIEJEN AND KIRILLOV



2z1 \1+z+N
2 + 1 \1+

N+z
2 +

2N+11 (z) 1 (N+ 3
2)

_F \N+1+z
2

,
N+1&z

2
; N+

3
2

; &sinh2(x)+
=(8 (2)

N (x, z)+8 (2)
N (&x, z)),

where

8 (2)
N (x, z)=exp((z&N&1) x)

_

:
J/[1, ..., N]

(&1)� j # J j `
j # J \

z+ j
z& j+ `

j # J, k � J }
j+k
j&k} exp \&2x :

j # J

j+
:

J/[1, ..., N+1]

(&1)� j # J j `
j # J, k � J }

j+k
j&k } exp \&2x :

j # J

j+
=exp((z&N&1) x)

�* (&1) |*|�2c* (z) s* (e&x1N)
�* (&1) |*|�2 s* (e&x1N+1)

.

(Here the notation and the range of the summations is in correspondence with
that of Proposition 5.1 and |*| denotes the weight of the partition *, i.e., the
sum of its parts.)

Proof. The proof of the noncompact Riemannian case is very similar to
that of the noncompact pseudo-Riemannian case of Proposition 5.1. On
the one hand we deduce via hypergeometric representations for the
associated Legendre function that

i&z9N (x+i?�2, z)=i&z1 (1&z) Pz
N (coth (x))

=
Eq. 2.3

(ex&e&x)z F \N+1&z, &N&z; 1&z;
1&coth (x)

2 +
=
(i)

(ex&e&x)zF \N+1&z
2

,
&N&z

2
; 1&z; &

1
sinh2(x)+

=
(ii) creg sinhN+1(x) F \N+1+z

2
,

N+1&z
2

; N+
3
2

; &sinh2(x)+
+csing sinh&N (x) F \&N+z

2
,

&N&z
2

; &N+
1
2

; &sinh2(x)+,
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with

creg=
2z1 (1&z) 1 (&N&1�2)

1\1&N&z
2 + 1\&N&z

2 +
=
(iii)

2z&1

1 \1+z+N
2 + 1 \1+

N+z
2 +

1 (z) 1 \N+
3
2+

,

csing=
2z1 (1&z) 1 (N+1�2)

1 \1+N&z
2 + 1 \1+

N&z
2 +

(where one uses: (i) the quadratic F(&, &; &; !) � F(&, &; &; 4!(1&!))
transformation [AS2, Eq. 15.3.30], (ii) the linear F(&, &; &; !) �
F(&, &; &; 1�!) transformation [GR, Eq. 9.132.2], and (iii) the reflection
relation of the gamma function). On the other hand it is clear from the
combinatorial representation of Proposition 4.1�Corollary 4.3 that
i&z9N (x+i?�2, z)=(2 sinh(x))N+1 8 (2)

N (x, z).
The formula of the proposition thus follows upon division by

(2 sinh(x))N+1 and selection of the regular (i.e., even) component in x. K

Proposition 5.3 (Case III: S 2N+3=SO(2N+4; R)�SO(2N+3; R)).
Let N # N* and let n # N. Then one has that

(2N+2)n

(N+1)n
F \&n, n+2(N+1); N+

3
2

; sin2 \x
2++

=(8 (3)
N (x, n)+8 (3)

N (&x, n)),

where

8 (3)
N (x, n)=exp(inx)

_

:
J/[1, ..., N]

(&1)� j # J j `
j # J \

n+N+1+ j
n+N+1& j+ `

j # J, k � J }
j+k
j&k } exp \&2ix :

j # J

j+
:

J/[1, ..., N+1]

(&1)�j # J j `
j # J, k � J }

j+k
j&k } exp \&2ix :

j # J

j+
=exp(inx)

�* (&1) |*|�2 c* (n+N+1) s* (e&ix1N)
�*(&1) |*|�2 s* (e&ix1N+1)

.

(Here the notation and the range of the summations is in correspondence with
that of Proposition 5.1 and |*| denotes the weight of the partition *, i.e., the
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sum of its parts. Moreover, the Pochhammer symbol (a)m stands for the
quotient 1 (a+m)�1 (a).)

Proof. The compact Riemannian case follows from the noncompact
Riemannian case of Proposition 5.2 by the substitution x � ix and
z � n+N+1. To arrive at the stated hypergeometric representation for the
l.h.s., one performs the quadratic transformation (cf. [AS2, Eq. 15.3.30])

F \&
n
2

, N+1+
n
2

; N+
3
2

; sin2(x)+=F \&n, 2(N+1)+n; N+
3
2

; sin2 \x
2++,

and one rewrites the normalizing gamma factors in front as

2n 1 (N+1+n�2) 1 (N+(n+3)�2)
1 (N+1+n) 1 (N+3�2)

=
(n+N+1)N+1

(N+1)N+1

=
(2N+2)n

(N+1)n
. K

Remark 5.1. Although formulated only for positive N for reasons of
convenience, the statements of Propositions 5.1�5.3 in fact still hold true in
the trivial case N=0 (cf. Remark 4.1). As a matter of fact, the com-
binatorial formulas reduce in this situation to well-known evaluation for-
mulas for certain elementary Gauss hypergeometric series. Specifically, for
N=0 Proposition 5.1 specializes to the identities

F \1+z
2

,
1&z

2
;

1
2

; &sinh2(x)+=
cosh(zx)
cosh(x)

and

z sinh(x) F \1+
z
2

, 1&
z
2

;
3
2

; &sinh2(x)+=
sinh(zx)
cosh(x)

(5.7b)

(cf. [AS2, Eq. 15.1.18] and [AS2, Eq. 15.1.16]), Proposition 5.2 specializes
to the identity

zF \1+z
2

,
1&z

2
;

3
2

; &sinh2(x)+=
sinh(zx)
sinh(x)

(5.8)

(cf. [AS2, Eq. 15.1.15]), and Proposition 5.3 specializes to the indentity

(n+1) F \&n, n+2;
3
2

; sin2 \x
2++=

sin((n+1) x)
sin(x)

(5.9)
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(cf. [AS2, Eq. 15.1.16]). The elementary functions in question are zonal
spherical functions on the symmetric spaces H3, 1=SO0 (3, 1; R)�
SO0 (2, 1; R) (Eqs. (5.7a), (5.7b)), H 1, 3

+ =SO0 (3, 1; R)�SO(3; R) (Eq. (5.8)),
and S3=SO(4; R)�SO(3; R) (Eq. (5.9)), respectively.

Remark 5.2. In the compact Riemannian situation of the sphere
S2N+3=SO(2N+4; R)�SO(2N+3; R) (Case III), the zonal spherical func-
tions , (3)

N (x, n) (5.6) boil��up to a normalization factor��down to ultra-
spherical (or Gegenbauer) polynomials [AS2, GR]

C*
n (cos(x))=

(2*)n

n!
F \&n, n+2*; *+

1
2

; sin2\x
2++ , *=N+1. (5.10)

The trivial case N=0 (cf. Remark 5.1) corresponds from this viewpoint to
the specialization of the ultraspherical polynomials to Chebyshef polyno-
mials of the second kind Un (cos(x))=sin((n+1) x)�sin(x) (cf. Eq. 5.9).
In other words, Proposition 5.3 may be looked upon as a combinatorial
formula for the ultraspherical polynomials C *

n(cos(x)), corresponding
to positive integer values of the parameter *. Notice, however, that
the individual building blocks for the r.h.s. of the combinatorial formula,
viz. the functions 8 (3)

N (\x, n), have a singularity at x=0 (mod ?). (This
is because the denominators factorize as (1&exp(�2ix))(N+1)(N+2)�2

(cf. Remark 4.3) and��apart from the overall factor exp(\inx)��the
numerators are only of degree N(N+1) in exp(�2ix).) In particular, the
functions 8 (3)

N (\x, n) are not Laurent polynomials in exp(ix), even though
the even combination 8 (3)

N (x, n)+8 (3)
N (&x, n) is so (since it is a polyno-

mial in cos(x)). (This state of affairs is of course in correspondence with the
fact that the differential equation for the zonal spherical function in (5.3)
has a regular singularity at x=0 (mod ?).)

Remark 5.3. In Propositions 5.1 and 5.2 the zonal spherical functions
are normalized such that they have an asymptotics of the form

e(z&N&1) x\e(N+1&z) x `
N

j=1
\z+ j

z& j+ for x � �. (5.11)

(Here the plus sign corresponds to the even cases and the minus sign
corresponds to the odd case.) Notice that these asymptotics are immediate
from the combinatorial representations on the r.h.s.

In the case of Proposition 5.3 the zonal spherical functions amount to
ultraspherical polynomials in cos(x) in view of the previous remark. The
normalization adopted by the proposition corresponds in this connection
to that of ultraspherical polynomials that are monic in eix+e&ix (as
(2N+2)n �(N+1)n=22n (N+3�2)n�(2N+2+n)n).
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Remark 5.4. It is instructive to further emphasize the close connection
between the analysis of zonal spherical functions on hyperboloids and
spheres and the study of exactly solvable one-dimensional quantum-
mechanical models. To this end we consider the following three closely
related Po� schl�Teller-type Schro� dinger equations (on the line, half-line,
and finite interval, respectively):

\ d2

dx2+
N(N+1)
cosh2(x)

&z2+ � (1)
N (x, z)=0, &�<x<�, (5.12)

\ d2

dx2&
N(N+1)
sinh2(x)

&z2+ � (2)
N (x, z)=0, 0<x<�, (5.13)

\ d2

dx2&
N(N+1)

sin2(x)
+(n+N+1)2+ � (3)

N (x, n)=0, 0<x<?. (5.14)

It is not difficult to infer that the substitutions

� (1)
N (x, z)=coshN+1(x) , (1)

N (x, z), (5.15)

� (2)
N (x, z)=sinhN+1(x) , (2)

N (x, z), (5.16)

� (3)
N (x, n)=sinN+1(x) , (3)

N (x, n), (5.17)

transform the above Schro� dinger equations into the second-order differen-
tial equations for the zonal-spherical functions of Eqs. (5.1), (5.2), and
(5.3), respectively. Connections of this kind between the harmonic analysis
on symmetric spaces of simple Lie groups and the study of certain
(integrable) quantum-mechanical systems are well known and generalize in
fact to the situation of higher rank symmetric spaces [OP]. For us it
means, in particular, that Propositions 5.1, 5.2, and 5.3 give rise to com-
binatorial formulas for the wave functions of the Po� schl�Teller eigenvalue
problems (5.12), (5.13), and (5.14). Specifically, for Eq. (5.12) multiplica-
tion of the zonal spherical functions from Proposition 5.1 by (2 cosh(x))N+1

brings us back to the even�odd solutions 9 (1)
N (x, z)\9 (1)

N (&x, z) with
9 (1)(x, z)=9(x, z) taken from Proposition 4.1�Corollary 4.3. Similarly, for
Eqs. (5.13) and (5.14) one obtains��by multiplication of the zonal spherical
functions of Propositions 5.2 and 5.3 by (2 sinh(x))N+1 and (2 sin(x))N+1

��regular solutions of the form 9 (2)
N (x, z)+9 (2)

N (&x, z) and 9 (3)
N (x, n)+

9 (3)
N (&x, n), where 9 (2)

N (x, z) and 9 (3)
N (x, n) are obtained from 8 (2)

N (x, z)
(cf. Proposition 5.2) and 8 (3)

N (x, n) (cf. Proposition 5.3) by the replace-
ments exp((z&N&1) x) � exp(zx) and exp(inx) � exp(i(n+N+1) x),
respectively, and the summation in the denominator becomes over
index sets J with indices from 1, ..., N instead of 1, ..., N+1. Corre-
spondingly, in the denominator of the Schur-function representation
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s* (e&(i) x1N+1) � s* (e&(i) x1N) and the summation becomes over partitions
with N instead of N+1 parts, i.e., the number of variables for the Schur
functions in the denominator decreases by one. (In other words,
9 (2)(x, z)=i&z9 (1)(x+i?�2, z) and 9 (3)(x, n)=9 (2)(ix, n+N+1) with
9 (1)(x, z)=9(x, z) taken from Proposition 4.1�Corollary 4.3.)

APPENDIX: PROOF OF THE SATO FORMULA USING
INVERSE SCATTERING THEORY

In this Appendix we reconstruct the Jost solution from the spectral data
of a one-dimensional Schro� dinger equation with a potential of Bargmann
type (i.e., a reflectionless Schwartz class potential). The reconstruction
culminates in the Sato formula for the reflectionless Jost function (cf.
Eq. (3.5)), which was used in Section 4. to arrive at the combinatorial
representations for the integer-degree associated Legendre functions.

Our starting point is a fundamental theorem from the inverse-scattering
theory for one-dimensional Schro� dinger equations with Schwartz class
potentials. The theorem states that��for a general Schro� dinger equation
with u(x) # S(R) say2��the potential u(x) and the Jost function 9 jost(x, z)
can be expressed in terms of the spectral data in the following way [SCM,
DT, AS1, NMPZ]

u(x)=2
d

dx
K(x, x), (A.1)

9jost(x, z)=exp(zx)+|
�

x
K(x, !) exp(z!) d! (Re(z)=0), (A.2)

where K(x, y) is the (unique) solution to the Gelfand�Levitan�Marchenko
integral equation

K(x, y)+F (x+ y)+|
�

x
K(x, !) F (!+ y) d!=0 (x< y) (A.3a)

with

F (x)= :
N

j=1

&j e&} j x+
1

2? |
�

&�
r(i`) eix` d`. (A.3b)

Here &}1 , ..., &}N(<0) and &1 , ..., &N(>0) are the spectral values and
normalization constants of the bound-state eigenfunctions, respectively,
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to smooth real potentials for which the integral ��

&�(1+x2) u(x) dx exists [DT].



and r(z) denotes the reflection coefficient for the potential under considera-
tion (cf. Section 3). In the reflectionless situation with r(z)=0, the
Gelfand�Levitan�Marchenko equation becomes separable and reduces to a
finite-dimensional linear algebraic system [SCM, DT, AS1, NMPZ].
Indeed, for F(x)=�N

j=1 & je&} j x substitution of the Ansatz

K(x, y)= :
N

j=1

Kj (x) e&} j y (A.4)

turns the Gelfand�Levitan�Marchenko equation into the linear system

Kj (x)+&j :
N

k=1

e&(}j+}k) x

} j+}k
Kk (x)=&&j e&}j x, j=1, ..., N. (A.5)

The solution of the linear system is given by

Kj (x)=
det A( j)(x)
det A(x)

, j=1, ..., N, (A.6)

where A(x) and A( j)(x) denote the matrices

1+&1

e&2}1x

2}1

} } } &1

e&(}1+} j) x

}1+}j
} } } &1

e&(}1+}N) x

}1+}N

b
. . . b b

A(x)= &j
e&(} j+}1) x

} j+}1

} } } 1+&j
e&2} j x

2}j
} } } &j

e&(} j+}N) x

}j+}N
(A.7)

b b
. . . b

&N
e&(}N+}1) x

}N+}1

} } } &N
e&(}N+} j) x

}N+} j
} } } 1+&N

e&2 }Nx

2}N

and

1+&1

e&2}1x

2}1

} } } &&1 e&}1x } } } &1

e&(}1+}N) x

}1+}N

b
. . . b b

A( j)(x)= &j
e&(} j+}1) x

}j+}1

} } } &&j e&} j x } } } & j
e&(} j+}N) x

} j+}N
(A.8)

b b
. . . b

&N
e&(}N+}1) x

}N+}1

} } } &&N e&}Nx } } } 1+&N
e&2}Nx

2}N
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(i.e., A( j)(x) is obtained from A(x) by replacing the jth column by
[A( j)(x)]k, j=&&ke&}kx, k=1, ..., N).

Substitution of the kernel K(x, y) 6.5, with coefficients Kj (x) of the form
(A.6), into Eq. (A.1) produces the Hirota formula for the potential u(x)
[SCM, AS1, NMPZ]

u(x)=2
d2

dx2 log {(x),

{(x)=det A(x)= :
J/[1, ..., N]

`
j # J

&j

2}j
`

j, k # J; j<k \}j&}k

}j+}k+
2

exp \&2 :
j # J

}jx+ .

Indeed, it is clear from the explicit expressions for A(x) and A( j)(x) that the
function K(x, x)=�N

j=1 e&}j x det A( j)(x)�det A(x) appearing on the r.h.s.
of (A.1) is equal to the logarithmic derivative of det A(x). The evaluation
of the determinant of A(x) moreover hinges on the Cauchy determinant
formula [M, p. 67]

det _ 1
x j+ yk& 1� j, k�N

=
>1� j<k�N (xj&xk)( yj& yk)

>1� j, k�N (xj+ yk)
. (A.9)

Specifically, the matrix A(x) (A.7) is a sum of the identity matrix and a
product of the form NDCD with N=diag(&1 , ..., &N), D=diag(e&}1x, ...,
e&}Nx) and C=[(}j+}k)&1]1� j, k�N . Hence, det A(x) is equal to the sum
of all principal minors of the matrix NDCD. Evaluation of these minors by
means of the Cauchy determinant in (A.9) then entails the above Hirota
formula.

To compute the corresponding Jost eigenfunction one substitutes the
finite-dimensional kernel K(x, y) (A.4), (A.6) in the formula of (A.2). Per-
forming the integration in the second term on the r.h.s. of (A.2).
results��after some further manipulations��in Sato's formula for the reflec-
tionless Jost function:

9jost(x, z)=exp(zx)\1& :
N

j=1

det A( j)(x)
det A(x)

e&}j x

(z&}j)+
=exp(zx)

det B(x, z)
det A(x)

=exp(zx)

:
J/[1, ..., N]

`
j # J

&j

2}j \
z+}j

z&}j+ `
j, k # J; j<k \

}j&}k

}j+}k+
2

exp \&2 :
j # J

}jx+
:

J/[1, ..., N]

`
j # J

&j

2}j
`

j, k # J; j<k \
}j&}k

}j+}k+
2

exp \&2 :
j # J

}jx+
,
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where B(x, z) denotes the matrix

B(x, z)=

1+
&1

2}1 \
z+}1

z&}1+ e&2}1x } } }
&1

}1+}N \z+}1

z&}1 + e&(}1+}N) x

_ b
. . . b &&N

}N+}1 \
z+}N

z&}N + e&(}N+}1) x } } } 1+
&N

2}N \z+}N

z&}N+ e&2}Nx

(i.e., B(x, z) is obtained from A(x) (A.7) by means of the substitution
&j � &j (z+}j)�(z&}j)). Indeed, the formula on the first line is immediate
from Eq. (A.2) with K(x, y) taken from Eqs. (A.4), (A.6). To pass to the
formula on the second line one uses the following pole expansion for
det B(x, z)

det B(x, z)=det B� (x)+ :
N

j=1

det Bj (x)
z&}j

, (A.10)

where B�(x)=limz � � B(x, z)=A(x) and Bj (x) is the matrix obtained
from B(xj z) via the substitution z=}j , after multiplication of the j th row
by z&}j . Subtracting e(}j&}k) x times jth column of the residue matrix Bj (x)
from its kth column, for k=1, ..., N, k{ j, and multiplying the resulting
matrix from the left by diag(}j&}1 , ..., 1, ..., } j&}N) and from the right by
diag((}j&}1)&1, ..., 1, ..., (} j&}N)&1) (where the unit is in the jth slot)
yields a matrix that differs from the matrix A( j)(x) by multiplication of the
jth column by &e&}j x (cf. Eq. (A.8)). Hence, we conclude that the expres-
sions for 9jost(x, z) on the first and second line indeed coincide. The Sato
formula on the third line then follows from the second line via the explicit
evaluation of det A(x) and det B(x, z) by means of the Cauchy determinant
formula (cf. above).

Notice that initially in Eq. (A.2). the spectral parameter z was chosen on
the imaginary axis (in order to guarantee that the integrals converge). It is
clear by analyticity, however, that the resulting Sato formula then in fact
holds (i.e., solves the Schro� dinger equation with corresponding Hirota
potential) for z # C"[}1 , ..., }N].
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