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These notes make use of

� José Figueroa-o’Farill’s online notes (Majorana.pdf) on Clifford algebras and their repre-
sentations

� Fulton and Harris – Representation Theory: A First Course

� Jean Gallier’s online notes (clifford.pdf) on Clifford algebras

� The wikipedia page on higher-dimensional gamma matrices

� The lecture notes on Clifford algebras by Lundholm and Svensson.

� The wikipedia page on the spin group

� Varadarajan - Supersymmetry for mathematicians

� Many posts on math stackexchange and math overflow

and other resources. There are some errors or bad exposition in some of the above resources,
and (to the best of my ability) there are rewrites/corrections here. We focus mainly on the case
of real/complex Clifford algebras (as we seek to characterise Wick rotation eventually), but a
decent amount of techniques will readily extend to fields other than R,C.

1 Structure of real Clifford algebras Cl(p, q)

1.1 Definitions and conventions

Let V = Rp,q be endowed with the metric ηab = diag(1, . . . ,−1). We will take the Clifford
algebra Cl(p, q) to be generated by products of Γa obeying

ΓaΓb + ΓbΓa = −2ηab id . (1.1)

If one wants to identify this with the construction by quotienting the tensor algebra of Rp,q,
then Γa correspond to the usual basis vectors ea of Rp,q such that η(ea, eb) = ηab and one writes
instead

eaeb + ebea = −2ηab id . (1.2)

This formulation also reveals the natural inclusion of the underlying vector space Rp,q → Cl(p, q).
A basis of Cl(p, q) is then given by the 2p+q vectors {id, ea1 . . . ean} where a1 < · · · < an and
n = 1, . . . , p+ q, very analogous to the exterior algebra Λ(Rp,q).

We briefly mention that the complex Clifford algebra Cl(d) of Cd endowed with the Euclidean
bilinear form δ = diag(1, . . . , 1) is isomorphic to the complexification Cl(p, q) of any real Clifford
algebra with d = p+ q.

1.2 Natural maps

We now look at some natural linear maps Φ : Cl(p, q) → Cl(p, q) which preserve the multiplica-
tion defined by (1.2). The ‘natural’ part means that it is independent of the basis we originally
choose for V ∼= Rp,q. Hence we will work explicitly in a basis-independent setting with Cl(V, η)
defined by its construction as a quotient of the tensor algebra. Here we just have a natural
inclusion map V → Cl(V, η) and the relation

vw + wv = −2η(v, w) (1.3)

for some symmetric non-degenerate bilinear form η with signature (p, q). Such maps Φ then
obey

Φ(vw + wv) = vw + wv = −2η(v, w) , (1.4)
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where we additionally require that Φ restricts to a linear map V → V . Sometimes these maps
are entirely determined by their restriction V → V and the rule Φ(vw) = Φ(v)Φ(w). In this
case the condition (1.4) can be rewritten as Φ ∈ O(V, η).

1.2.1 Signature-independent maps

Two important examples are the main involution α and the reversal or main anti-automorphism
τ defined by

α(v) := −v , (1.5)

τ(v1 . . . vn) := vn . . . v1 , (1.6)

where v, v1, . . . , vn ∈ V are arbitrary vectors. Indeed, we can see that

α(vw + wv) = α(v)α(w) + α(w)α(v) = (−1)2(vw + wv) , (1.7)

τ(vw + wv) = τ(vw) + τ(wv) = wv + vw , (1.8)

both preserve Clifford multiplication. Note that τ(xy) = τ(y)τ(x) in general; this is why it is
called an anti -automorphism.

Both maps α and τ are independent of the signature (p, q). In fact, α : V → V which sends
v 7→ −v is just an orthogonal linear map on V which we have lifted to the Clifford algebra.
Physically, α = PT ∈ O(V, η) which flips both space and time directions.

1.2.2 A signature-dependent map

An involution β which depends on the signature (p, q) can be constructed starting from a map
β : V → V which depends on the signature. Indeed, we just want to choose β = P or β = T .
The interpretation depends on a choice of what part of V is temporal and what part of V is
spatial, i.e. a choice of decomposition V = V1 ⊕ V2 where V1 ⊥ V2 are orthogonal and η|V1 is
positive-definite and η|V2 is negative-definite.1 With the choice made, define

β(v1) := v1 , (1.9)

β(v2) := −v2 . (1.10)

Sadly, such a map is not natural (basis-independent) because we had to choose a decomposition
V = V1 ⊕ V2, of which there are infinitely many, even in the case dimV = 2, (p, q) = (1, 1).
However, it is independent of a choice of basis for V1 and for V2. Hence one could at least say
it is natural for Cl(V1 ⊕ V2, η).

We can also readily define γ = αβ = βα which acts as T if β acts as P . Explicitly,

γ(v1) := −v1 , (1.11)

γ(v2) := v2 . (1.12)

These maps β, γ essentially correspond to the complex transpose of a given matrix represen-
tation of the Clifford algebra. We will make this more precise later and relate it to pinor and
spinor representations.

1.2.3 Clifford algebras are superalgebras

A useful point is that α(v) = −v clearly decomposes Cl(V, η) into two parts

Cl(V, η) = Cl(V, η)0 ⊕ Cl(V, η)1 , (1.13)

1We take V1 to be temporal, so β = P .
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where Cl(V, η)0 contains linear combinations of even products and Cl(V, η)1 contains linear
combinations of odd products.

It is obvious that Clifford multiplication preserves this Z2-grading, i.e.

Cl(V, η)i ⊕ Cl(V, η)j ⊆ Cl(V, η)i+j , (1.14)

where i+ j is interpreted mod 2. In particular, the product of two evens is even, the product of
two odds is even and the product of an even and an odd is odd.

An interesting point is that any subset of Cl(V, η) will naturally inherit these grading prop-
erties, including the group of units Cl(V, η)×. One could call it a ‘supergroup’, but this is bad
terminology as it typically means a super Lie group, i.e. a group in the category of supermani-
folds.

1.3 Lipschitz–Clifford group and pin and spin groups

We first consider how to realise reflections in a Clifford algebraic way. Then develop the tools
needed to define pin and spin groups as groups living inside Cl(V, η).

The idea is that we will first establish a group Γ(V, η) ⊆ Cl(V, η) called the Lipschitz–Clifford
group or Lipshitz group or Clifford group which has a representation on V

Ãd : Γ(V, η) → GL(V ) (1.15)

such that its image contains all possible compositions of reflections and, by Cartan–Dieudonné
theorem, the entire orthgonal group, i.e. O(V, η) ⊆ im Ãd (in fact O(V, η) = im Ãd). We will
then find a method to identify the appropriate subgroup Pin(V, η) ⊆ Γ(V, η) corresponding to
the Pin group, at which point we will have the representation

Ãd : Pin(V, η) → O(V, η) (1.16)

which is also a covering map with Pin(V, η) the double (and, depending on (p, q), universal)
cover of O(V, η).

This will readily descend to the case of the even subgroup Spin(V, η) := Pin0(V, η) :=
Pin(V, η) ∩ Cl(V, η)0 with

Ãd : Spin(V, η) → SO(V, η) . (1.17)

We will also define the orthochronous spin group Spin+(V, η) ⊆ Spin(V, η) which will always
be connected, except for (p, q) = (1, 0), (0, 1), (1, 1). Equality Spin+(V, η) = Spin(V, η) is only
obtained for definite forms η with (p, q) = (0, d), (d, 0).

We will also give a more explicit presentation of pin and spin as groups of the form

Pin(V, η) = {v1 . . . vr | η(vi) = ±1} ⊆ Cl(p, q) , (1.18)

Spin(V, η) = {v1 . . . v2r | η(vi) = ±1} = Pin(p, q) ∩ Cl(p, q)0 , (1.19)

where η(v) := η(v, v). That is, each element is merely a product of vectors with non-zero norms.

1.3.1 Reflections

Consider some basis-free formulation (V, η). Given some v ∈ V such that η(v, v) ̸= 0, we can
reflect about the hyperplane orthogonal to v by

σv(w) = w − 2
η(v, w)

η(v, v)
v . (1.20)

Geometrically, one wants to translate w far enough in the direction v so that their ‘dot product’
changes signs, i.e. η(σv(w), v) = −η(w, v). The following lemma gives their main properties.
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Lemma 1.1. Let σv : V → V be a reflection, then σv is linear, σv ∈ O(V, η) and det(σv) = −1.

Proof. Reflections are obviously linear by virtue of their formula. Checking σv ∈ O(V, η) just
amounts to computing η(σv(w), σv(u)), so we skip this.

Checking det(σv) = −1 is more interesting. Notice v determines an orthogonal decomposition
V = span(v) ⊕ H. Moreover, it is clear that σv(v) = −v and σv(h) = h. Hence, in any basis
of H, σv has only eigenvalue 1 on each basis vector, whilst it has eigenvalue −1 on any basis of
span(v). Thus, det(σv) =

∏
λi = −1.

Finally, a key theorem is that reflections actually generate the orthogonal group!

Theorem 1.2 (Cartan–Dieudonné). Let (V, η) be a d = p+ q-dimensional vector space over a
field k with char(k) ̸= 2 and with non-degenerate symmetric bilinear form η. Then every element
of O(V, η) is a composition of at most d reflections.

Similarly, even products of reflections must generate the special orthogonal group.

1.3.2 The twisted adjoint representation and Clifford-Lipschitz group

If we consider reflections in context of the Clifford algebra by leveraging the natural inclusion
V → Cl(V, η), then one may write

σv(w) = w − 2η(v, w)

η(v, v)
v (1.21)

= w − −(vw + wv)

(−v2)
v (1.22)

= w − (vwv + wv2)

v2
(1.23)

= −vwv−1 (1.24)

= α(v)wv−1 (1.25)

=: Ãd(v)w . (1.26)

Thus, reflections σv : V → V are realised naturally by the Clifford algebra by twisted conjugation
or twisted adjoint representation.

This twisted adjoint representation is quite an interesting concept to make more general. Let
Cl(V, η)× denote the group of units. Let x ∈ Cl(V, η)× and y ∈ Cl(V, η), then we define the
linear map2

Ãd(x)y := α(x)yx−1 . (1.27)

A basic property of the twisted adjoint representation is that

Ãd(x1x2)y = α(x1x2)y(x1x2)
−1 = α(x1)α(x2)yx

−1
2 x−1

1 = Ãd(x1)Ãd(x2)y . (1.28)

Consequently, Ãd(x) is invertible with inverse Ãd(x)−1 = Ãd(x−1).

We now consider the collection of x ∈ Cl(V, η)× that act as linear maps Ãd(x) : V → V
when restricted to V .

Definition 1.3 (Lipschitz–Clifford group). The Lipschitz–Clifford group Γ(V, η) is defined as

Γ(V, η) := {x ∈ Cl(V, η)× | Ãd(x)(v) ∈ V for all v ∈ V } . (1.29)

Similarly, we define the special Lipschitz–Clifford group by Γ0(V, η) := Γ(V, η) ∩ Cl(V, η)0.

2This is not quite an automorphism as Ãd(x)(y1y2) need not always equal Ãd(x)(y1)Ãd(x)(y2).
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This indeed defines a group. If x1, x2 ∈ Γ(V, η), then x1x2 ∈ Γ(V, η) because

Ãd(x1x2)v = Ãd(x1)Ãd(x2)v ∈ V . (1.30)

Moreover, if x ∈ Γ(V, η), then x−1 ∈ Γ(V, η) because Ãd(x−1) = Ãd(x)−1 : V → V . The case of
the subset Γ0(V, η) being a group follows as well since the product of evens is even.

The twisted adjoint representation is a ‘surjective’ representation. From the above
we can see that the (special) Lipschitz–Clifford groups are afforded a representation on V by

Ãd. That is we have group homomorphisms

Ãd : Γ(V, η) → GL(V ) , (1.31)

Ãd : Γ0(V, η) → GL(V ) . (1.32)

Note that arbitrary products of vectors x = v1 . . . vr exist in Cl(V, η). Indeed, this is fine,
but such an expression is not unique in general. If r > p + q we can guarantee such a product
will decompose into a linear combination of products of vectors with p+q ≤ r by picking a basis
of V and using Clifford multiplication (1.2).

Such a product x = v1 . . . vr will also be a unit iff η(vi, vi) ̸= 0 are all non-zero. This is
because τ(x) = λx−1 for some non-zero λ ∈ R iff η(vi, vi) ̸= 0 are all non-zero. Moreover,

Ãd(x)v ∈ V because this is just a composition of many reflections. Thus, we get the following
result by leveraging Cartan-Dieudonné.

Proposition 1.4. The twisted adjoint representation

Ãd : Γ(V, η) → GL(V ) (1.33)

is indeed a representation and O(V, η) ⊆ im Ãd. The analogous result holds for Γ0(V, η) and
SO(V, η).

1.3.3 The Clifford norm and properties of the Clifford–Lipschitz group

Now we introduce a useful map κ defined by κ := ατ = τα. A similar, but less useful map
is κγ := γτ = τγ and κγ , by virtue of using γ, is dependent on a choice of decomposition
V = V1 ⊕ V2. They have the following property when acting on products of orthonormal basis
vectors

xκ(x) = ±1 , (1.34a)

xκγ(x) = 1 , (1.34b)

with x = ea1 . . . ean .

Definition 1.5 (Clifford norm). The Clifford norm N : Cl(V, η) → Cl(V, η) is defined by
N(x) := xκ(x).3

We need a technical lemma to progress.

Lemma 1.6. The kernel of Ãd : Γ(V, η) → GL(V ) is ker(Ãd) = R× · id.
3We avoid using Nγ(x) := xκγ(x) because it is unyieldly to work with and actually loses some important

properties which N has.
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Proof. Let x ∈ ker(Ãd), then α(x)v = vx for all v ∈ V when treating things inside Cl(V, η).
Since v has fixed parity 1, decomposing x = x0 + x1 yields two equations

x0v = vx0 , (1.35)

−x1v = vx1 . (1.36)

Fix a basis ea of V which diagonalises η as ηab = diag(1, . . . ,−1). This determines a basis
{id, ea1 . . . ean} where a1 < · · · < an and n = 1, . . . , p + q of Cl(V, η). Pick any basis vector ea,
then this guarantees that there is a unique expansion

x0 = a+ eab (1.37)

where a is even, b is odd and both do not contain ea. Given the expansion of x0, the equation
x0v = vx0 then decomposes according to parity into two more equations. These are

av = va , (1.38)

eabv = veab . (1.39)

Now set v = ea. Since b does not contain ea and orthogonality means eaeb = −ebea when a ̸= b,
then bea = −eab since b is odd. The second equation then becomes

−(ea)
2b = (ea)

2b , (1.40)

where (ea)
2 = ±1 ̸= 0, which sets b = 0. Since the choice of ea in the expansion of x0 was

arbitrary, this means that x0 = λ id for some λ ∈ R. The same tricks applied to −x1v = vx1
also show that x1 = 0. Hence, x = x0 = λ id and since x is a unit, λ ∈ R× is non-zero.

Now we can show that the Clifford norm is well-behaved on the Lipschitz–Clifford group. It
is useful to note that α, τ being (anti)automorphisms guarantees that α(x−1) = α(x)−1 and the
same for τ .

Proposition 1.7. The following are true

1. If x ∈ Γ(V, η), then N(x) ∈ ker(Ãd) = R× · id

2. The restriction N : Γ(V, η) → R× · id is a group homomorphism.

3. If x ∈ Γ(V, η), then N(α(x)) = N(x).

Proof. We check 1. If x ∈ Γ(V, η), then τ(Ãd(x)v) = Ãd(x)v for all v ∈ V . On the otherhand

τ(Ãd(x)v) = τ(α(x)vx−1) = τ(x−1)vκ(x) = Ãd(κ(x)−1)v (1.41)

Thus, Ãd(x−1κ(x−1))v = Ãd(N(x−1))v = v. SoN(x−1) is indeed in the kernel ker(Ãd) = R×·id.
We check 2. Indeed,

N(xy) = xyκ(xy) = xN(y)κ(x) = N(x)N(y) (1.42)

because N(x) ∈ R× · id.
We check 3. Indeed,

N(α(x)) = α(x)α(κ(x)) = α(xκ(x)) = α(N(x)) = N(x) (1.43)

because N(x) ∈ R× · id.

Now, using these well-behaved properties of N , we can prove that the Ãd-representation of
Γ(V, η) on V not only contains O(V, η) in its image, but that each Ãd(x) is actually orthogonal.
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Proposition 1.8. If x ∈ Γ(V, η), then Ãd(x) ∈ O(V, η) is orthogonal.

Proof. We will prove that the norm v 7→ η(v) := η(v, v) is preserved and then use the polarisation
identities to ensure the inner product is preserved.

Let x ∈ Γ(V, η) and v ∈ V such that η(v) ̸= 0, then v ∈ Γ(V, η). Moreover,

N(Ãd(x)v) = N(α(x)vx−1) = N(x)N(v)N(x)−1 = N(v) . (1.44)

Where, for any vector w ∈ V N(w) = −w2 = η(w). Hence, the above shows η(Ãd(x)v) = η(v).
We will invoke topology to deal with the remaining non-zero null-vectors v ∈ V with η(v) = 0.

Such vectors have a unique expansion as v = v1 + v2 with η(v1) = −η(v2) ̸= 0 where we use the
usual decomposition V = V1 ⊕ V2. Hence they can also be expressed as v = limε→0 vε where
vε = v1 + (1 + ε)v2 and η(vε) = ε2η(v2) ̸= 0. Thus, we can write

lim
ε→0

N(Ãd(x)vε) = lim
ε→0

N(vε) . (1.45)

Now consider N restricted to V , as mentioned above, it is proportional to the quadratic form η,
hence it is continuous. Moreover, linear maps (like Ãd(x)) are continuous on V . Thus,

N(Ãd(x)v) = N(v) (1.46)

holds for null-vectors v ̸= 0 with η(v) = 0. So the norms of all vectors in V are preserved.

By putting the various bits of information together we have the short exact sequence

1 −→ R× −→ Γ(V, η)
Ãd−−→ O(V, η) −→ 1 . (1.47)

From here we can make an argument to explicitly characterise the Clifford–Lipschitz group
Γ(V, η).

Proposition 1.9. The Clifford–Lipschitz group Γ(V, η) can be equivalently defined as

Γ(V, η) := {λv1 . . . vr | η(vi) ̸= 0 , λ ∈ R×} . (1.48)

In geometric algebra, this new redefinition is called the ‘versor group’.

Proof. For now, let Γ(V, η) take its usual definition and let G := {λv1 . . . vr | η(vi) ̸= 0 , λ ∈ R×}.
It is clear that G ⊂ Γ(V, η).

Take x ∈ Γ(V, η), then, because Ãd(x) is orthogonal, Cartan–Dieudonneé guarantees that

there exists a product of reflections y ∈ G such that Ãd(x) = Ãd(y). Hence xy−1 ∈ ker Ãd = R×.
Thus, x = λy for some λ ∈ R×.

Finally we end with another characterisation of the Clifford–Lipschitz group Γ(V, η).

Lemma 1.10. The following are true

1. For any x ∈ Cl(V, η), if τ(x) = x, then x ∈ R⊕ V .

2. Let x be a unit. If N(x) ∈ R× · id is a non-zero scalar, then Ãd(x)v ∈ V .

Proof. We check 1. Indeed, fix a basis ea of V which diagonalises ηab = diag(1, . . . ,−1). As τ
is linear it suffices to look at its action on the basis {id, ea1 . . . ean} where a1 < · · · < an and
n = 1, . . . , p+ q of Cl(V, η). Clearly, only the basis vectors id, ea are preserved. Hence, τ(x) = x
implies x ∈ R⊕ V .

We check 2. We have x−1 = λ−1κ(x) for some real λ ̸= 0. Thus, any v ∈ V obeys

Ãd(x)v = α(x)vx−1 = −λ−1α(xvτ(x)) . (1.49)

Moreover
τ(Ãd(x)v) = −λ−1α(τ(xvτ(x))) = −λ−1α(xvτ(x)) = Ãd(x)v (1.50)

Finally, Ãd(x)v must be in V by parity.
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As a result of the proposition and lemma we now have a nice theorem.

Theorem 1.11. The following definitions are all equivalent

1. Γ(V, η) := {x ∈ Cl(V, η)× | Ãd(x)(v) ∈ V for all v ∈ V } .

2. Γ(V, η) := {λv1 . . . vr | η(vi) ̸= 0 , λ ∈ R×} .

3. Γ(V, η) := {x ∈ Cl(V, η)× | N(x) ∈ R× · id} .

1.3.4 Pin and spin groups

We are now ready to define pin and spin groups. We will make an effort to relate to other
definitions of them.

Definition 1.12. The pin group is defined as any of the equivalent definitions (by Theorem
1.11)

Pin(V, η) := {x ∈ Γ(V, η) | N(x) = ±1} , (1.51)

Pin(V, η) := {x ∈ Cl(V, η)× | N(x) = ±1} , (1.52)

Pin(V, η) := {±v1 . . . vr | η(vi) = ±1} . (1.53)

The spin group is defined as Spin(V, η) := Pin0(V, η), i.e. the even part. The orthochronous spin
group is defined as Spin+(V, η) := {x ∈ Spin(V, η) | N(x) = 1}. It also goes by the name ‘rotor
group’ in geometric algebra.

General comments Note that N(x) = ±1 is indeed needed to define pin and spin groups in
general. The plus or minus one is indicative of the presence of vectors v with negative norm
N(v) = −η(v) < 0. This of course occurs for a non-degenerate indefinite quadratic form η. It
also occurs for negative-definite quadratic forms. Indeed, in our V = V1 ⊕ V2 convention with
η|V1 positive-definite and η|V2 negative-definite, along with our Clifford algebra convention

vw + wv = −2η(v, w) (1.54)

we find a unit time-like vector has N(v1) = −v21 = η(v1) = 1 whereas a unit space-like vector
has N(v2) = −v22 = η(v2) = −1. Setting V1 = 0 so that η is negative-definite then reveals that
N(v2) = −1 still occurs.

The only time when N(x) = 1 is sufficient to describe Pin(V, η) (in our conventions) is when
V = V1.

Setting N(x) = 1 is still useful though (as is evident in Spin+(V, η)’s definition). Indeed,

in our conventions, setting N(x) = 1 forces Ãd(x) to always involve an even number of time-
like reflections, hence temporal orientation is preserved and x is called orthochronous. As a
consequence, if Ãd(x) ∈ O(V1, η|V1) only affects V1, then N(x) = 1 iff det(Ãd(x)) = 1.

In particular, this means we have very explicit realisations of the groups as

Pin(V, η) := {±v1 . . . vr | η(vi) = ±1} , (1.55a)

Spin(V, η) := {±v1 . . . v2r | η(vi) = ±1} , (1.55b)

Spin+(V, η) := {±v1 . . . v2r | η(vi) = ±1, the number of vi such that η(vi) = 1 is even} .
(1.55c)

Definition 1.13. The orthochronous special orthogonal group is defined as SO+(V, η) := Ãd(Spin+(V, η)).

From the above explicit realisation of Spin+(V, η), it is obvious that SO+(V, η) is a subgroup
of SO(V, η) generated by products of reflections with an even number of time-like reflections
and an even number of space-like reflections.
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From here onwards it is easier to state/read the results by using the signature (p, q) of (V, η),
so we state the following in that notation.

Theorem 1.14. The following results hold

1. The following are exact sequences

1 −→ {−1, 1} −→ Pin(p, q)
Ãd−−→ O(p, q) −→ 1 , (1.56)

1 −→ {−1, 1} −→ Spin(p, q)
Ãd−−→ SO(p, q) −→ 1 , (1.57)

1 −→ {−1, 1} −→ Spin+(p, q)
Ãd−−→ SO+(p, q) −→ 1 , (1.58)

and Ãd is a (double) covering map in each case.

2. Spin+(p, q) = Spin(p, q) iff η is positive-definite or negative definite. The same holds for
SO+(p, q) = SO(p, q).

3. Spin(p, q) ∼= Spin(q, p), but not in general for pin groups.

4. The orthochronous special orthogonal group SO+(p, q) is connected. Hence, it is the iden-
tity connected component of the orthogonal groups.

5. The orthochronous spin group Spin+(p, q) is connected except in the cases (p, q) = (1, 1), (1, 0), (0, 1)
where instead Spin+(1, 1) ∼= R×, and Spin+(1, 0) = Spin+(0, 1) = {−1, 1}. Hence, it is
(mostly) the identity connected component of the pin and spin groups and, in the cases
where it is, all groups provide a non-trivial double cover of their respective orthogonal
groups.

6. For definite signatures, π1(SO(1)) = 1, π1(SO(2)) ∼= Z, π1(SO(n)) ∼= Z2 for n ≥ 3.
Moreover, for indefinite signatures (p, q) with p ≥ 1 and q ≥ 1

π1(SO
+(p, q)) ∼=



1 if (p, q) = (1, 1) ,

Z if (p, q) = (1, 2) ,

Z2 if p = 1 and q ≥ 3 ,

Z× Z if (p, q) = (2, 2) ,

Z× Z2 if p = 2 and q ≥ 3 ,

Z2 × Z2 if p, q ≥ 3 ,

(1.59)

keeping in mind that O(p, q) = O(q, p). Consequently, due to the non-trivial double cover-
ing π1(Spin(2)) ∼= Z, π1(Spin(n)) ∼= 1 for n ≥ 3. For indefinite signatures

π1(Spin
+(p, q)) ∼=



1 if (p, q) = (1, 1) ,

Z if (p, q) = (1, 2) ,

1 if p = 1 and q ≥ 3 ,

? if (p, q) = (2, 2) ,

? if p = 2 and q ≥ 3 ,

? if p, q ≥ 3 ,

(1.60)

keeping in mind that Spin(p, q) = Spin(q, p) (?’s are for ones I am unsure of). For more
details about the uniqueness of double covering see Varadarajan’s book. The key point is
that, in a good chunk of cases, the covering is not universal.
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Proof. We check 1.
Since ker Ãd = R× = N(Γ(p, q)) for the Clifford–Lipschitz group, then it is clear that the

kernel must restrict to ker Ãd = {−1, 1} = {±N(Pin(p, q))} for the Pin subgroup (note that
N(x) = N(−x)). Similarly, for the spin and orthochronous spin subgroups. Hence, each point

p ∈ im Ãd has a preimage of 2 points {x,−x} in the pin, spin and orthochronous spin groups.
We skip checking this is a local homeomorphism, but it indeed is.

We check 2.
This is immediate from (1.55). Indeed, Spin+(V, η) contains even products of unit vectors

which also have an even number of unit time-like vectors. If there are only time-like vectors
(positive-definite), then Spin+(p, 0) = Spin(p, 0) because Spin(p, 0) just contains even products
of unit vectors. The same holds for the negative-definite case. If η is indefinite, i.e. p, q are
both non-zero, then a product of a unit time-like and space-like vector is in Spin(p, q), but not
Spin+(p, q), so they are not equal. The special orthogonal version is the same argument, just

with reflections (take the image under Ãd).
We check 3.
This is easier to check later when we classify real Clifford algebras. In particular, we will find a

non-canonical algebra isomorphism Cl0(p, q) ∼= Cl0(q, p) which descends to a group isomorphism
Spin(p, q) ∼= Spin(q, p).

We check 4.
Fix a decomposition V = V1 ⊕ V2, and note that σvσw = σσv(w)σv where η(w) = η(σv(w))

preserves that w is space-like (η(w) < 0) or time-like (η(w) > 0). This ensures any product of
reflections σv1 . . . σvr can be rewritten with time-like reflections grouped on the left and space-
like reflections grouped on the right. Now, we can of course make a path between any two
vectors v, w by

γ(t) = (1− t)v + tw . (1.61)

However, if η(v) > 0 and η(w) < 0 intermediate value theorem dictates that η(γ(t)) = 0 for some
t and hence the curve would not always have a well-defined reflection σ. Now, any time-like
vector has a unique decomposition v = v1 + v2, η(v) > 0 and can be continuously joined to v1
by

γ(t) = v1 + (1− t)v2 (1.62)

where η(γ(t)) = η(v1) + (1 − t)2η(v2) ≥ η(v) > 0. Moreover, η|V1 is positive-definite, so any
vectors within it may be connected by a path and retain positive norm. Hence, by continuity,
there is a path γ(t) in O(p, q) between any two time-like reflections. The same arguments hold
for space-like reflections. Using that σ2

v = 1 is idempotent for any v ∈ V such that v ̸= 0, it is
clear that any element of SO+(p, q) is connected to the identity precisely because such elements
have an even number of time-like reflections and space-like reflections.

We check 5.
In the two 1-dimensional cases, the definitions themselves (1.55) ensures Spin+(1, 0) =

Spin+(0, 1) = {−1, 1}. In the Spin+(1, 1) case, fix an orthonormal basis {e1, e2} of V with
η(e1) = −η(e2) = 1. We claim that every element x ∈ Spin+(1, 1) is of the form

x = ±ete1e2 = ±(cosh(t) + sinh(t)e1e2) (1.63)

for some t ∈ R. This is not hard to check as any element of Cl0(1, 1) has a unique expansion
x = a + be1e2 and N(x) = a2 − b2. Hence, x ∈ Spin+(1, 1) iff a2 − b2 = 1. This has a general
solution x = ±

√
1 + b2 + be1e2 for b ∈ R. The invertible relation b = sinh(t) gives the result. A

group isomorphism Spin+(1, 1) → R× is then given by ±ete1e2 7→ ±et.
Suppose dimV = p+q ≥ 2 and (p, q) ̸= (1, 1). We of course know that SO+(p, q) is connected

and Ãd : Spin+(p, q) → SO+(p, q) is a double covering with ker Ãd = {−1, 1}. Hence Spin+(p, q)
is connected iff ±1 live in the same connected component. Due to our (p, q) assumptions we
can find orthonormal vectors e1, e2 on which η is positive-definite or negative definite. That is
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(η(e1), η(e2)) = (1, 1), (−1,−1). W.l.o.g. take the (1, 1) case and define a path γ in Spin+(p, q)
by

γ(t) = (cos te1 + sin te2)(cos te1 − sin te2) (1.64)

Clearly, γ(0) = e21 = −η(e1) = −1 and γ(π2 ) = −e22 = η(e2) = 1 gives a path from −1 to 1. This
also works for the (−1,−1) case, so ±1 are indeed connected. Note it would fail if we tried it
for the (1,−1) case as η((cos(π4 )e1 + sin(π4 )e2)) = 0 has zero norm.

We check 6.
We give a sketch. First SO(1) = 1 is just the trivial group with a single point given by the

identity element, so π1(SO(1)) = 1 is trivial. Second SO(2) ∼= U(1) ∼= S1 is a ‘nice’ topological
space4 and it is universally covered by R with fiber Z, so π1(SO(2)) ∼= Z. In the case of SO(3),
one can check explicitly using that Spin(3) ∼= SU(2) ∼= S3. Then use that π1(S

3) = 1 is trivial
so that Spin(3) is a universal double cover, which means π1(SO(3)) ∼= Z2. To deal with n ≥ 3 in
general we use the fibration SO(n) → SO(n+1) → Sn5 and its long exact sequence in homotopy
groups. Indeed, the sequence

π2(S
n) −→ π1(SO(n)) −→ π1(SO(n+ 1)) −→ π1(S

n) (1.65)

is exact and π1(S
n) = π2(S

n) = 1 are trivial since n ≥ 3. Thus, π1(SO(n)) ∼= π1(SO(n+1)) for
n ≥ 3.

In the indefinite case we use the fact that SO+(p, q) has a maximal compact subgroup given
by SO(p) × SO(q) and that Cartan’s decomposition theorem for Lie groups (Theorem 1.15)
ensures a Lie group deformation retracts onto a maximal compact subgroup. Thus, we get the
rest from

π1(SO
+(p, q)) ∼= π1(SO(p))× π1(SO(q)) . (1.66)

In the above proof have made use of the following theorem so that Lie groups deformation
retract onto maximal compact subgroups.

Theorem 1.15 (Cartan). A connected real Lie group G is diffeomorphic to K × Rn where K
is a maximal compact subgroup of G. Moreover, all maximal compact subgroups are conjugate
to K.

1.3.5 A brief look at representation theory—from complex simple Lie algebra
p.o.v.

We look at only finite dimensional complex representations here. We give a quick rundown of
some rep theory results on semisimple Lie algebras.

The classical complex Lie algebras come in the four families

An := sl(n+ 1,C) , (1.67)

Bn := so(2n+ 1,C) , (1.68)

Cn := sp(2n,C) , (1.69)

Dn := so(2n,C) , (1.70)

and, along with the exceptional algebras E6, E7, E8, F4, G2, they list all the complex simple Lie
algebras (up to low-dimensional cases D1 = so(2,C), D2 = so(4,C), which are not simple). They

4This has to do with path-connected, locally path-connected, semi-locally path connected etc. Such require-
ments are fulfilled by connected manifolds (like the circle S1).

5This is in fact a principal bundle with structure group SO(n). One can realise this fibration easily with
SO(n+ 1) → Sn ⊆ Rn+1 by B 7→ Ben+1 so that a preimage of any point is diffeomorphic to SO(n).
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have Dynkin diagrams
An

Bn

Cn

Dn

E6

E7

E8

F4

G2

which correspond to a graphical realisation of the simple roots and their relations via the Cartan
matrix A = (aij)—a node for each simple root and an edge between nodes based on entries in
the Cartan matrix. A key point is that the fundamental weights ωi are related to the simple
roots by αi by αi = aijωj . Every weight λ corresponds to irrep with highest weight λ and all
irreps arise this way. The fundamental weights have the property that any weight λ is a unique
non-negative integer linear combination of them.

Noting that, given two highest weight irreps Vλ1 , Vλ2 , the tensor product Vλ1 ⊕ Vλ2 contains
the irrep Vλ1+λ2 , we can see that all irreps can be realised as subreps of a tensor product of the
fundamental reps Vωi . Finally, Weyl’s theorem on complete reducibility ensures that all reps
can be decomposed into a sum of irreps, so that we can construct all representations using only
Vωi .

Theorem 1.16 (Weyl’s theorem on complete reducibility). Consider a semisimple Lie algebra
over a field k of characteristic zero. All its finite dimensional reps over k are completely reducible.

Proof. Use Whitehead’s first lemma and follow Wiki. Alternatively, over k = C, one can leverage
compact real forms in the spirit of Weyl.

This theory holds generally for complex semisimple Lie algebras (which are direct sums of
the simple ones). However, we are interested in the case of the special orthogonal algebras
g = so(2n + 1,C), so(2n,C) = Bn, Dn. Due to the double covering and connectedness results,
we find that all the following real Lie algebras are the same

pin(p, q) ∼= spin(p, q) ∼= spin+(p, q) ∼= so(p, q) (1.71)

Moreover, we can complexify to get so(p, q)⊗C ∼= so(p+q,C). The simple result below then
determines the structure of complex representations of so(p, q).

Proposition 1.17. Let g be a real Lie algebra, then any complex representation V gives a
complex representation of its complexification gC. Moreover, by restriction we can take a complex
representation of gC to one for g. These operations are inverse.

Proof. Given a complex representation ρ : g → gl(V ) we need only define

ρC(x+ iy) := ρ(x) + iρ(y) (1.72)

for each x, y ∈ g to lift it to a representation of gC because ρ is R-linear and already preserves
g’s Lie bracket and

[x+ iy, z + iw]C := [x, y]− [y, w] + i([x,w] + [y, z]) . (1.73)

Given a complex representation of gC we simply restrict to g ⊆ gC and C-linearity and
[−,−]C preservation immediately restrict to R-linearity and [−,−] preservation.

These operations obviously undo eachother, hence are inverse.
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The key point of all of this is that the fundamental rep(s) corresponding to the right-most
nodes on the Dynkin diagrams Bn, Dn are the fundamental spinor rep(s), i.e. the complex spin-12
representation(s) of so(p+ q,C) and so(p, q). In physics these would be called the complex Weyl
spinor rep(s).

Moreover, these spinor rep(s) can be realised as representations of the spin group Spin+(p, q),
even in the cases where it is not simply connected. This could be seen as being due to the
complexification Spin+(p+q,C) being simply connected, and all of complex rep theory depending
only on complexified versions of groups/algebras.6 In case this is unclear, we are referencing
Lie’s three theorems relating Lie algebras and Lie groups, in particular that a Lie algebra is (in
some precise way) the same information as a connected, simply connected Lie group.

The non-spinor fundamental representations all arise in the following way (from Fulton-Harris
section 19.2)

Theorem 1.18. The following hold for n ≥ 0 (maybe issues with D1 = so(2,C), D2 = so(4,C)):

1. Let V = C2n be the defining/standard representation of so(2n,C). All non-spinor fun-
damental representations are V,Λ2V, . . . ,Λn−2V . There are two remaining fundamental
spinor representations.

2. Let V = C2n+1 be the defining/standard representation of so(2n + 1,C). All non-spinor
fundamental representations are V,Λ2V, . . . ,Λn−1V . There is one remaining fundamental
spinor representation.

1.4 Classification of real Clifford algebras

It is clear that representations of the algebra Cl(p, q) give representations of its group of units
Cl(p, q)× and hence all of its subgroups, like Pin(p, q) by restriction. Similar things can be said
about Cl0(p, q) and the even subgroups.

We will find that the fundamental spinor representation(s), i.e. the complex spin-12 represen-
tation(s) of Spin+(p, q) will arise as the only irreps of Cl0(p, q).

The first step to this result is to classify the Clifford algebras as being matrix algebras or
the sum of two matrix algebras. First we observe some low-dimensional examples.

Proposition 1.19. The following low-dimensional isomorphisms hold:

1. Cl(1, 0) ∼= C ,

2. Cl(0, 1) ∼= R⊕ R ,

3. Cl(2, 0) ∼= H ,

4. Cl(0, 2) ∼= Mat2(R) ,

5. Cl(1, 1) ∼= Mat2(R) .

Proof. We check 1. This follows from writing Cl(1, 0) w.r.t. the usual basis {id, e1} with
(e1)

2 = −η(e1) = −1.
We check 2. Similar, but now we have basis {id, e1} with (e1)

2 = −η(e1) = 1. Hence, as a
vector space we have R2 = R⊕ R and then we put some multiplication on it.

We check 3. In this case we have a basis {id, e1, e2, e1e2} where (e1)
2 = (e2)

2 = (e1e2)
2 = −1.

Hence, a map to H is given by e1 7→ i , e2 7→ j , e1e2 7→ ij = k.

6One defines the complex spin groups much the same way as we define the real ones. Just follow the earlier
processes, but for k = C.
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We check 4. In this case we have a basis {id, e1, e2, e1e2} where (e1)
2 = (e2)

2 = 1 and
(e1e2)

2 = −1. In this case consider the map

id 7→
(
1 0
0 1

)
, e1 7→

(
1 0
0 −1

)
, e2 7→

(
0 1
1 0

)
, e1e2 7→

(
0 1
−1 0

)
. (1.74)

Such matrices clearly span Mat2(R).
We check 5. In this case we have a basis {id, e1, e2, e1e2} with (e1)

2 = −1 and (e2)
2 =

(e1e2)
2 = 1. In this case we almost copy Cl(0, 2) and use the map

id 7→
(
1 0
0 1

)
, e1 7→

(
0 1
−1 0

)
, e2 7→

(
0 1
1 0

)
, e1e2 7→

(
1 0
0 −1

)
. (1.75)

Next we note that larger Clifford algebras can be constructed from smaller ones

Lemma 1.20. The following ‘periods’ hold:

1. Cl(d+ 2, 0) ∼= Cl(0, d)⊗ Cl(2, 0) ,

2. Cl(0, d+ 2) ∼= Cl(d, 0)⊗ Cl(0, 2) ,

3. Cl(p+ 1, q + 1) ∼= Cl(p, q)⊗ Cl(1, 1) .

Proof. This is easiest to see at the level of generator mappings. Moreover, I find the ‘gamma
matrix’ notation nicer here.

We check 1. Let Γ′
1, . . . ,Γ

′
d be the generators of Cl(0, d) and Γ′′

1,Γ
′′
2 be the generators of

Cl(2, 0). Define a map Cl(0, d) ⊗ Cl(2, 0) → Cl(d + 2, 0) by its value on the generators Γa of
Cl(d+ 2, 0) as

Γa =


Γ′
a ⊗ Γ′′

1Γ
′′
2 , for 1 ≤ a ≤ d ,

id⊗Γ′′
1 , for a = d+ 1 ,

id⊗Γ′′
2 , for a = d+ 2 .

(1.76)

Indeed,

1.5 Clifford algebra (almost) as a group algebra

A key point about finite groupsG is that their representations over a field k are in correspondence
(bijection) with representations of the k-group algebra k[G] = span(eg)g∈G.

A further point is if k1 ⊂ k2 is a subfield of k2 then k2-representations of G are in correspon-
dence with k2-representations of k1[G]. So we may take k1 = R, k2 = C if we want.

Gamma group. One can almost redefine Cl(p, q) as the real group algebra generated by the
finite group GΓ defined by the generators {id,−1,Γa}7 obeying the relations

� (−1)2 = id and (−1)Γa = Γa(−1),

� (Γa)
2 = −1 if a = 0, . . . , p− 1,

� (Γa)
2 = id if a = p, . . . , p+ q − 1,

� ΓaΓb = (−1)ΓbΓa if a ̸= b.

7Following the wikipedia page on higher-dimensional gamma matrices (almost).
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Due to these relations we find all elements g ∈ GΓ can be written uniquely as

g = (−1)nΓa1 . . .Γam (1.77)

where n = 0, 1 and a1 < · · · < am and 0 ≤ m ≤ p + q. Thus this is indeed a finite group and
has |GΓ| = 2p+q+1 elements since

2N =

N∑
i=0

(
N

i

)
. (1.78)

Group algebra and quotient. Indeed, the group algebra k[G] over a field k of some group
G has basis {eg}. Thus we have the issue that e−1 is considered a distinct element. This is easy
to fix, we just quotient by the ideal I = ⟨e−1 + eid⟩, i.e. set e−1 = −eid, and get

R[GΓ]/I = Cl(p, q) . (1.79)

Representations. We only consider representations ρ : GΓ → GL(V ) such that ρ(α) =
−ρ(id). Such representations obviously extend to representations of R[GΓ]/⟨eα = −eid⟩ =
Cl(p, q) and vice-versa.

The main point to all of this is that we can leverage some useful results of the representation
theory of finite groups.

Lemma 1.21. Given a complex representation V of a finite group G, there exists a G-invariant
inner product on V .

Proof. Take any inner product ⟨−,−⟩ on V , then a G-invariant inner product ⟨−,−⟩G is given
by

⟨v, w⟩G :=
∑
g∈G

⟨gv, gw⟩ (1.80)

where gv := ρ(g)v is shorthand.

As a consequence we get Maschke’s theorem so that representations V always decompose
into the direct sum of irreps.
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