

#### MATH 4 WISDOM

#### **PUBLIC DOMAIN 2022 ANDRIUS KULIKAUSKAS**

 $\infty$  $\sum S_n(x)t^n = A(t)e^{xu(t)}$ n=0

# **Sheffer Polynomials**

Combinatorial Space for Quantum Physics

### www.math4wisdom.com

# Andrius Kulikauskas

#### PATREON

#### Schrödinger equation

$$\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\psi = E_n\psi$$

Solution for Quantum harmonic oscillator involves Hermite polynomials

$$\psi_n = C_n P_n(kx) e^{-\frac{1}{4}(kx)^2}$$

Solution for Hydrogen atom (radial component) involves generalized Laguerre polynomials  $\psi_{nl}=C_{nl}P_{nl}(kx)e^{-\frac{1}{2}kx}(kx)^l$ 

Certain variants of these polynomials are Sheffer polynomials

$$S_n(x) = c_n P_n(rx)$$

#### **Sheffer polynomials**

 $S_n(x)$  has degree n

Encodes a combinatorial space with n elements

# Sheffer polynomials

- 1) Combinatorial space. Pointed partitions.
- 2) The generating function
- 3) Calculating the k-th derivative
- 4) Bijection and induction
- 5) Significance

#### Bell numbers: Partitions of a set

 $1, 1, 2, 5, 15, 52, 203, 877, \ldots$ 

#### 5 ways to partition a set with 3 elements

 $\begin{bmatrix} 012 \end{bmatrix} \qquad \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 12 \end{bmatrix} \qquad \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 02 \end{bmatrix} \qquad \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 01 \end{bmatrix} \qquad \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$ 

# No choice where to put the initial element $\begin{bmatrix} 0 \end{bmatrix}$

#### We can ignore the initial element.

Rethink the initial part as distinguished, as a base part in a pointed partition, as free space...



#### No compartment !









#### **3 ways to add the n+1st element**



# Sheffer polynomials

- 1) Combinatorial space. Pointed partitions.
- 2) The generating function
- 3) Calculating the k-th derivative
- 4) Bijection and induction
- 5) Significance

# Sheffer polynomials of type 0 $\sum_{n=0}^{\infty} S_n(x)t^n = A(t)e^{xu(t)}$

where

$$u_0 = 1 \qquad A(t) = \sum_{n=0}^{\infty} a_0 t^n = 1 + a_1 t + a_2 t^2 + \dots$$
$$u_0 = 0, u_1 = 1 \qquad u(t) = \sum_{n=0}^{\infty} u_n t^n = t + u_2 t^2 + u_3 t^3 + \dots$$

$$\sum_{n=0}^{\infty} c_n P_n(x) t^n = \sum_{n=0}^{\infty} S_n(x) t^n = A(t) e^{xu(t)}$$

Hermite

$$\sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{He}_{n}(x) t^{n} = e^{-\frac{1}{2}t^{2}} e^{xt}$$
$$= (1 - t^{2} + \frac{1}{2!}t^{4} - \frac{1}{3!}t^{6} + \dots)e^{xt}$$



 $= (1 + t + t^{2} + \dots)e^{x(t+t^{2}+t^{3}+\dots)}$ 





free space

compartments

$$n!S_n(x) = s_n x^n + \dots + s_k x^k + \dots + s_0$$

n compartments k compartments free space

$$S_n(x) \text{ is the coefficient of } t^n \text{ in}$$

$$\sum_{n=0}^{\infty} S_n(x)t^n = A(t)e^{xu(t)}$$

$$= (1 + a_1t + a_2t^2 + \cdots)e^{x(t+u_2t^2+u_3t^3+\cdots)}$$

$$= (1 + a_1t + a_2t^2 + \cdots)(1 + xu(t) + \frac{1}{2!}(xu(t))^2 + \cdots)$$

$$= (1 + \cdots + a_{n-k}t^{n-k} + \cdots)(1 + \cdots + \frac{1}{m!}(xu(t))^m + \cdots)$$

contributes  $t^{n-k}$  contributes  $t^k$ 

$$a_{n-k}t^{n-k}$$

$$\frac{1}{m!}(xu(t))^m$$

contributes  $t^{n-k}$ 

contributes 
$$t^k$$

$$k = l_1 + l_2 + \dots + l_m$$

| n- $k$ | $l_1$ | $l_2$ |  | $l_i$ |  |  | $l_m$ |
|--------|-------|-------|--|-------|--|--|-------|
|--------|-------|-------|--|-------|--|--|-------|

free space

#### m compartments

$$\frac{1}{m!}(xu(t))^m$$
 contributes  $\frac{1}{m!}$  but what does it mean?

## $\frac{1}{2!}$ unites products of 2 distinct parts such as $t^2 \times t^4$ $t^4 \times t^2$

#### but doesn't work for repeated parts $t^3 \times t^3$

#### Rethink the generating function



# Sheffer polynomials

- 1) Combinatorial space. Pointed partitions.
- 2) The generating function
- 3) Calculating the k-th derivative
- 4) Bijection and induction
- 5) Significance

$$u_0 = 0$$
  $u_1 = 1$ 

$$u(t) = u_0 + u_1 t + u_2 t^2 + \cdots$$
  
=  $u(0) + u'(0)t + \frac{u''(0)}{2!}t^2 + \frac{u'''(0)}{3!}t^3 + \cdots$ 

$$u_i = \frac{u^{(i)}(0)}{i!}$$

#### multiply by n!

$$n! \times \frac{1}{m!} (xu(t))^m$$
$$n! \times \frac{x^m}{m!} (u'(0)t + \frac{u''(0)}{2!}t^2 + \frac{u'''(0)}{3!}t^3 + \cdots)^m$$

leads to terms with coefficients

$$\frac{n!}{(n-k)!l_1!l_2!\cdots l_m!} = \binom{n}{n-k,l_1,l_2,\ldots,l_m}$$

#### Factorial weights let us

distribute n elements across the m+1 compartments

$$n! \times \frac{1}{(n-k)!} \frac{1}{l_1!} \frac{1}{l_2!} \frac{1}{l_i!} \frac{1}{l_i!} \frac{1}{l_m!}$$

$$\frac{n-k}{l_1 l_2 l_2 l_i} \frac{l_i}{l_i} \frac{l_m}{l_m}$$
free space  $m$  compartments

#### Elements make the compartments distinct.

| n- $k$ | $l_1$ | $l_2$ |  | $l_i$ |  |  | $l_m$ |
|--------|-------|-------|--|-------|--|--|-------|
|--------|-------|-------|--|-------|--|--|-------|

free space m compartments

$$\frac{1}{m!}$$
 from  $\frac{1}{m!}(xu(t))^m$  converts  $m!$  lists to 1 set

Calculate 
$$S_n(x)$$
 given  $\sum_{n=0}^{\infty} S_n(x)t^n = A(t)e^{xu(t)}$ 

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n} \sum_{k=0}^{\infty} S_k(x) t^k = \sum_{k=n}^{\infty} S_k(x) \frac{k!}{(k-n)!} t^{k-n}$$

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n} \sum_{k=0}^{\infty} S_k(x) t^k \bigg|_{t=0} = n! S_n(x)$$

$$\sum_{n=0}^{\infty} S_n(x)t^n = A(t)e^{xu(t)}$$

$$n!S_n(x) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} A(t) e^{xu(t)} \right|_{t=0}$$

$$S_n(x) = \frac{1}{n!} \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} A(t) e^{xu(t)} \right|_{t=0}$$

chain rule, product rule...

analytic symmetry

$$\frac{\mathrm{d}}{\mathrm{dt}}e^t = e^t$$

$$\frac{\mathrm{d}^4}{\mathrm{dt}^4} \sin t = \sin t$$

$$S_n(x) = \frac{1}{n!} \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} A(t) e^{xu(t)} \right|_{t=0}$$

$$a_0 = A(0) = 1$$
  
 $u_0 = u(0) = 0$   $e^{xu(0)} = 1$   
 $u_1 = u'(0) = 1$ 

$$S_0(x) = A(0)e^{xu(0)} = 1$$

$$E(t) = e^{xu(t)} \qquad E(0) = 1$$
$$E'(t) = xu'(t)e^{xu(t)}$$



$$\frac{\mathrm{d}}{\mathrm{dt}}A(t)E(t) = A'(t)E(t) + A(t)E'(t)$$

$$= A'(t)E(t) + A(t)xu'(t)E(t)$$

set t = 0

$$S_1(x) = 1!S_1(x) = A'(0)E(0) + A(0)xu'(0)E(0)$$
$$= A'(0) + x$$




#### 5 pedigrees

 $A''(t)E(t) + A'(t)xu'(t)E(t) + A'(t)xu'(t)E(t) + A(t)xu''(t)E(t) + A(t)(xu'(t))^{2}E(t)$ 

combine

 $A''(t)E(t) + 2A'(t)xu'(t)E(t) + A(t)xu''(t)E(t) + A(t)(xu'(t))^{2}E(t)$ 

to yield 4 terms

#### $A''(t)E(t) + 2A'(t)xu'(t)E(t) + A(t)xu''(t)E(t) + A(t)(xu'(t))^{2}E(t)$

set t=0

$$2!S_2(x) = A''(0) + (2A'(0) + u''(0))x + x^2$$

 $\frac{d^3}{dt^3}A(t)E(t)$ 

 $= A'''(t)E(t) + 3A''(t)xu'(t)E(t) + 3A'(t)xu''(t)E(t) + 3A'(t)(xu'(t))^{2}E(t) + A(t)xu'''(t)E(t) + 3A(t)xu''(t)xu''(t)E(t) + A(t)(xu'(t))^{3}E(t)$ 

#### 8 terms coming from 15 pedigrees

$$3!S_3(x) = A'''(0) + [3A''(0) + 3A'(0)u''(0) + A(0)u'''(0)]x$$
$$+ [3A'(0) + 3A(0)u''(0)]x^2 + x^3$$

 $\frac{d^3}{dt^3}A(t)E(t)$ 

 $= A'''(t)E(t) + 3A''(t)xu'(t)E(t) + 3A'(t)xu''(t)E(t) + 3A'(t)(xu'(t))^{2}E(t)$ 

 $+A(t)xu''(t)E(t) + A(t)(xu''(t))^{2}E(t) + 2A(t)xu'(t)xu''(t)E(t) + A(t)(xu'(t))^{3}E(t)$ 

#### Each term has the form

positive integer 
$$N \cdot A^{(k)}(t) x u^{(l_1)}(t) x u^{(l_2)}(t) \cdots x u^{(l_m)}(t) E(t)$$
  
baby factor father factor mother factor

#### www.oeis.org

The OEIS is supported by the many generous donors to the OEIS Foundation.

#### <sup>013627</sup> THE ON-LINE ENCYCLOPEDIA OE<sup>13</sup> OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

#### The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

1,2,5,15

Search Hints Welcome Video

For more information about the Encyclopedia, see the Welcome page.

<u>Languages:</u> English Shqip עראי Bangla Български Català 中文 (正體字, 简化字(1), 简化字(2)) Hrvatski Čeština Dansk Nederlands Esperanto Eesti עברית Suomi Français Deutsch Eλληνικά אינייים 管력 Magyar Igbo Bahasa Indonesia Italiano 日本語 호절 한국어 Lietuviu मराठी Bokmål Nynorsk Polski Português Română Русский Српски Slovenščina Español Svenska Tagalog ภาษาไทย Тürkçe Українська עניי Tiếng Việt Cymraeg

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy.

Last modified November 12 14:23 EST 2022. Contains 358073 sequences. (Running on oeis4.)

The OEIS is supported by the many generous donors to the OEIS Foundation.

## OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

| Search    | n: | sea | :1 | .2. | 5. | 15 |
|-----------|----|-----|----|-----|----|----|
| Decire es |    | ~~~ |    | -   |    |    |

1,2,5,15

| Displaying 1-10 c                                              | of 396 results found.                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                               | page 1 2 3 4 5 6 7 8 9 10 40                                                                                                                                                                                                           |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sort: relevance   r                                            | eferences   number   modified   created I                                                                                                                                                                                                                                                                                                                                                                | Format: long   <u>short</u>   <u>data</u>                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        |
| A000110 E                                                      | Sell or exponential numbers: numbe<br>Formerly M1484 N0585)                                                                                                                                                                                                                                                                                                                                              | er of ways to partition a set of n labeled                                                                                                                                                                                                                                                                                                                                                                    | d elements. +30<br>1204                                                                                                                                                                                                                |
| 1, <b>1, 2, 5</b><br>1382958545,<br>47486981615<br>46385903322 | 15, 15, 52, 203, 877, 4140, 21<br>10480142147, 82864869804, 68<br>6751, 4506715738447323, 44152<br>29999353, 4963124652361875627                                                                                                                                                                                                                                                                         | 1147, 115975, 678570, 4213597, 2<br>32076806159, 5832742205057, 5172<br>2005855084346, 44595886929480528<br>74 (list; graph; refs; listen; history; text; interna                                                                                                                                                                                                                                             | 27644437, 190899322,<br>4158235372,<br>9,<br><u>1 format</u> )                                                                                                                                                                         |
| OFFSET                                                         | 0,3                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |
| COMMENTS                                                       | The leading diagonal of its<br>Bernstein and Sloane (199<br>Also the number of equivale<br>elements Federico Arbo<br>2005<br>a(n) = number of nonisomorp<br>adjacent regions. Adjacen<br><u>Wilson</u> , Feb 22 2005<br>If an integer is squarefree<br>the number of ways of wri<br><u>Murthy</u> , Apr 23 2001<br>Consider rooted trees of he<br>next generation of n mear<br>either the root or at hei | s difference table is the sequer<br>95) <u>N. J. A. Sloane</u> , Jul 04 2<br>ence relations that can be defin<br>oleda (federico.arboleda(AT)gmai<br>phic colorings of a map consistint<br>regions cannot have the same<br>e and has n distinct prime factor<br>iting it as a product of its div<br>eight at most 2. Letting each tr<br>ns we produce a new tree for ever<br>ight 1, which gives the Bell num | nce shifted, see<br>2015<br>ned on a set of n<br>nl.com), Mar 09<br>ang of a row of n+1<br>color <u>David W.</u><br>ors then a(n) is<br>visors <u>Amarnath</u><br>ree 'grow' into the<br>ery node which is<br>nbers <u>Jon Perry</u> , |

# Sheffer polynomials

- 1) Combinatorial space. Pointed partitions.
- 2) The generating function
- 3) Calculating the k-th derivative
- 4) Bijection and induction
- 5) Significance

#### bijection

#### pedigrees of the terms of



# pointed partitions of

$$\frac{\mathrm{d}^n}{\mathrm{dt}^n} A(t) E(t)$$

$$\{1,\ldots,n\}$$

#### establish by induction on $\boldsymbol{\mathcal{N}}$

#### **base case of induction** k = 0



#### $case \quad k = 1$

#### **1-st derivative** of A(t)E(t)

#### 1 element pointed partitions



#### induction step from n to n+1pedigrees of pointed partitions of n-th derivative $\{1, ..., n\}$ mother E(t)father $A^{(j)}(t)$ *j* elements in free space baby $xu^{(l_i)}(t)$ $l_i$ elements in *i*th compartment

$$A^{(j)}(t)xu^{(l_1)}(t)xu^{(l_2)}(t)\cdots xu^{(l_m)}(t)E(t)$$
  
$$n = j + l_1 + l_2 + \dots + l_m$$

## Given n, extend to n+1pedigrees of pointed partitions of n-th derivative $\{1, ..., n\}$ $n = j + l_1 + l_2 + \dots + l_m$ $\frac{\mathrm{d}}{\mathrm{dt}}A^{(j)}(t)$ Add new element to free space $\frac{\mathrm{d}}{\mathrm{d}t}xu^{(l_i)}(t)$ Add new element to *i*-th compartment $\frac{\mathrm{d}}{\mathrm{d}t}E(t)$ Add new compartment with 1 element

### **Tracking distinct pedigrees** $A(t)E(t) \longleftrightarrow$ empty free space #1 $A^{\#1}(t)E(t) \longleftrightarrow 1$ $A(t)xu^{\#1}E(t) \longleftrightarrow [1]$ #2 #2 $A^{\#2}(t)xu^{\#1}E(t) \longleftrightarrow 2[1]$ $A^{\#1}(t)xu^{\#2}E(t) \xleftarrow{} 1[2]$

#### Suppose bijection holds for $\,n\,$



#### **Constructive proof needs lots of notation!**

 $A^{\#1}(t)xu^{\#2}xu^{\#3}E(t) \leftrightarrow 1[2][3]$  $A^{\#1\#2\#3}(t)E(t) \leftrightarrow 123$  $A^{\#1\#2}(t)xu^{\#3}E(t) \leftrightarrow 12[3]$  $A^{\#2}(t)xu^{\#1}xu^{\#3}E(t) \leftrightarrow 2[1][3]$  $A^{\#1\#3}(t)xu^{\#2}E(t) \leftrightarrow 13[2]$  $A^{\#3}(t)xu^{\#1}xu^{\#2}E(t) \leftrightarrow 3[1][2]$  $A^{\#2\#3}(t)xu^{\#1}E(t)\leftrightarrow 23[1]$  $A(t)xu^{\#1\#2\#3}E(t) \leftrightarrow [123]$  $A(t)xu^{\#1\#2}xu^{\#3}E(t) \leftrightarrow [12][3]$  $A^{\#1}(t)xu^{\#2\#3}E(t) \leftrightarrow 1[23]$  $A^{\#2}(t)xu^{\#1\#3}E(t) \leftrightarrow 2[13]$  $A(t)xu^{\#1\#3}xu^{\#2}E(t) \leftrightarrow [13][2]$  $A^{\#3}(t)xu^{\#1\#2}E(t) \leftrightarrow 3[12]$  $A(t)xu^{\#1}xu^{\#2\#3}E(t) \leftrightarrow [1][23]$  $A(t)xu^{\#1}xu^{\#2}xu^{\#3}E(t) \leftrightarrow [1][2][3]$ 

$$n!S_n(x) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} A(t) e^{xu(t)} \right|_{t=0}$$





# Sheffer polynomials

- 1) Combinatorial space. Pointed partitions.
- 2) The generating function
- 3) Calculating the k-th derivative
- 4) Bijection and induction
- 5) Significance



compare with minimization operator  $\mu$ 



compare with Jacobi identity for Lie algebras [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

#### partition of $\{0, 1, 2, ..., n\}$ is better understood here as



choosing 1 out of q

choosing 1 out of 1



 $\infty$  $u(t) = \sum u_i t^i$ i=0

 $u(t) = \sum_{i=1}^{\infty} \frac{u^{(i)}(0)}{i!} t^{i}$ i=0

ordinary generating function

exponential generating function

#### orthogonal Sheffer polynomials

$$S_n(x) = c_n P_n(x)$$

#### which values of $c_n$ are relevant?

#### FIVESOME orthogonal Sheffer polynomials



#### **Probability and statistics**

#### NEF-QEV Natural Exponential Families with Quadratic Variance Functions

**Generalized Linear Models** 

See also:

Pearson distribution

#### **PROBABILITY DISTRIBUTIONS**





#### I have been studying the

Fundamental theorem of covering spaces

in Algebraic Topology with the

NYC Category Theory and Algebra Meetup

Join us!



# terms = loops = equivalences O space

#### YouTube:

#### John Baez's lectures This Week's Finds



#### root system ← →

#### compact space



#### A role for cellular automata? Ask Stephen Wolfram

#### How to encode the evolution of physical laws? Ask John Harland

#### Investigate math for wisdom?

Ask me! Andrius Kulikauskas math4wisdom.com

$$B_n = \sum_{k=0}^n \left\{ \begin{matrix} n \\ k \end{matrix} \right\}$$

# What is known about Sheffer polynomials and Stirling numbers of the second kind?

#### Ask Tian-Xiao He

2006 Tian-Xiao He The Generalized Stirling Numbers, Sheffer-type Polynomials and Expansion Theorems

#### FIVESOME orthogonal Sheffer polynomials



#### Thank you for helpful online resources!

1939 Sheffer Some properties of polynomial sets of type zero Duke Mathematical Journal archive.org
1973 Rota et al Finite Operator Calculus sciencedirect.com
1982 Morris Natural Exponential Families with Quadratic Variance Functions projecteuclid.org
2000 Stanton Orthogonal Polynomials and Combinatorics
2001 Kim, Zeng A Combinatorial Formula for the Linearization Coefficients of General Sheffer Polynomials semanticscholar.org
2006 Tian-Xiao He The Generalized Stirling Numbers, Sheffer-type Polynomials and Expansion Theorems

2015 Galiffa, Riston An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial sequences projecteuclid.org

Xavier Viennot *The Art of Bijective Combinatorics Part IV* viennot.org Videobook!

Tom Copeland blog Shadows of Simplicity and answers at MathOverflow

#### Thank you!

# **PATREON**
## Thank you!

John Harland Thomas Gajdosik Kirby Urner Antonio Jesús García Palomo Bill Pahl

... and all participants of the Math 4 Wisdom discussion group!



## MATH 4 WISDOM

## **PUBLIC DOMAIN 2022 ANDRIUS KULIKAUSKAS**