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WEIGHTED DERANGEMENTS AND THE
LINEARIZATION COEFFICIENTS OF ORTHOGONAL

SHEFFER POLYNOMIALS

JIANG ZENG

[Received 6 September 1990—Revised 11 April 1991]

ABSTRACT

The present paper is devoted to a systematic study of the combinatorial interpretations of the
moments and the linearization coefficients of the orthogonal Sheffer polynomials, i.e., Hermite,
Charlier, Laguerre, Meixner and Meixner-Pollaczek polynomials. In particular, we show that
Viennot's combinatorial interpretations of the moments can be derived directly from their classical
analytical expressions and that the linearization coefficients of Meixner-Pollaczek polynomials have
an interpretation in the model of derangements analogous to those of Laguerre and Meixner
polynomials.

1. Introduction

Let {pn(x): n = 0, 1, 2,...} be a sequence of polynomials, orthogonal on the
real line with respect to a positive measure da(x). One of the questions
concerning the polynomials pn(x) is to determine, or at least say something useful
about, the coefficients a(k, n,m) in the expansion of

n+m

(1.0) pn(x)pm(x) = 2 a(k, n, m)pk{x).
k=0

This is usually called the linearization problem in the literature [4]. Taking
orthogonality into account, we then have the equivalent equation:

r+co , + co

I pn(x)pm(x)Pk(x) da{x) = a{k, n, m)j pk(x)pk(x) da(x).

The problem thus turns out to deal with the integrals of a product of three
polynomials. More generally, we can define the linearization coefficients of pn(x),
abbreviated by I.e. in what follows, to be the following integral of a product of m
arbitrary polynomials:

(1.1) UPn,(x)da{x).

Any such integral can, of course, be evaluated in finite terms by inserting the
polynomial expressions for pni(x) and integrating term by term. However, as
pointed out by several authors [4,20,37], the interesting problem is not just any
representation of (1.1) but the one in which the non-negativity of the integral is
apparent for some range of values of the parameters. Although it is well-known
that the integral (1.1) is positive for most classical orthogonal polynomials [3],
there is no simple general expression for (1.1). In the past two decades, many
authors have also considered the refined problem of finding combinatorial inter-
pretations of (1.1) for classical orthogonal polynomials. (See, for example,
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2 JIANG ZENG

[6,7,8,14,17,20,29,22,40,41].) In view of their analytical aspects, it should be
interesting to find a geometric set-up of which the generating polynomial with
positive weight is the integral (1.1) and which reduces to orthogonality when
m = 2. The main object of the present paper is to show that such a combinatorial
interpretation of (1.1) exists for all the orthogonal Sheffer polynomials.

Recall that a sequence of polynomials p\{x), p2{x), ... is said to be of Sheffer
type if and only if the exponential generating function of these polynomials has
the form

where f(t), g(t) are formal power series with /(0) = 1, g(0) = 0 and g'(0) =£ 0. As
proved by Meixner [12,34], there are only five classes of orthogonal Sheffer
polynomials, i.e., the Hermite, Laguerre, Charlier, Meixner and Meixner-
Pollaczek polynomials. To be more precise, we now give the explicit generating
functions and weight functions of these polynomials. Throughout this paper, we
denote by (x)n the shifted factorial (x)n =x(x + 1)... (x + n - 1).

(a) Hermite polynomials (Hn(x))nlss0:

y Hi ) — - (2x - 2)

orthogonal on U with respect to the weight function x>->e~x2.
(b) Charlier polynomials (Cn(x ; a))n^0:

(i.4) £«.;.)£-
orthogonal on Z+ with respect to the weight function x*->ax/x\.

(c) Laguerre polynomials (L(
n

a)(x))n^0:

orthogonal on U + with respect to the weight function x
(d) Meixner polynomials (Mn(x ; (3, c))n^0:

(1.6) 2 Mn(x ; |9, c) -% = ( l - -)*(! - r)"*^,

orthogonal on Z+ with respect to the weight function x>-+(f})xc
x/x\.

(e) Meixner-Pollaczek polynomials (Pn(x ; 6, rj))n»0:

(1.7) 2Q Pn(x ; S, n) £ = [(1 + 6tf + t2]-"'2 exp[x a r c t a n ( ^

orthogonal on U with respect to the weight function (here a misprint in [12,40]
has been corrected)

x -* [ r ( ^ ) ] " 2 \T(±(ri + ix))\2 exp(x arctan d).

Let m be a positive integer and n be a sequence n = (n1,..., nm) of m



COMBINATORICS OF SHEFFER POLYNOMIALS

non-negative integers. The linearization coefficients of the five sets of the Sheffer
polynomials can then be defined, with appropriate normalizations, as follows:

(1.8) af(n) = ̂  J ^ (U 2-i/2Hni(x))e-x2dx;

00 / m \ ax

(1.9) <<?(n ;«) = * - £ [Yl(-a)niCni(x;a))—,

(l.io) ^(n;") = F7TTT: ( r K - i r ^

1 (or + 1; Jo V=i

(1.11) ^(n;)3,c) = ( l -c /
1 f+°° / w

(1.12) 0>(n ; 6, q) = [ 1 />„,(* ' *
J —oo W\Xj CLX J—oo V = l

where w(x) = [T(\rj)]-2 \T(\(r) + ix))\2 exp(x arctan 6).
Although the combinatorial aspects of the I.e. of simple Laguerre polynomials

LfiXx) were considered first (cf. [17,6,29,10]), the interpretation of the I.e. of
the general Laguerre polynomials was found only recently by Foata and
Zeilberger [20]. The interpretation of the I.e. of Hermite polynomials is due to
Godsil [26] and Azor, Gillis and Victor [8]. The combinatorial interpretations of
the I.e. of Charlier and Meixner polynomials were recently found by Zeng [41].
Thus, as far as the linearization problems of Sheffer polynomials are concerned,
there is still one interesting question remaining: is there an analogous inter-
pretation for the linearization coefficients of Meixner-Pollaczek polynomials?
The object of this paper is to give an affirmative answer to this question, but we
also present a new approach to the linearization problem, which is based on
generating functions and the interpretation of the moments.

Various approaches have been used hitherto to investigate the combinatorial
interpretations of the linearization coefficients. In the earliest paper [17], Even
and Gillis showed, by identifying the recurrence relations, that the I.e. of the
simple Laguerre polynomials counts the 'generalized derangements': rearrange-
ments of a multiset of objects of different 'colours' with the property that each
object goes to an object of a different colour. Shortly after this, Askey and Ismail
[6] observed that this result can be derived more directly by identifying the
generating function of the integral (1.10) (ar = O) with that of the number of
derangements, which was evaluated by MacMahon's Master theorem. Similarly,
by refining the counting of derangements, they also found a combinatorial
interpretation of the I.e. of Meixner polynomials Mn(x ; c, )3) for /3 = 1 [6]. In
addition, Carlitz [10] also gave a short proof of the result of Even and Gillis by
carrying out the integral (1.10) explicitly, still in the case where tf = 0, and then
applying an inversion formula or the principle of inclusion-exclusion. One
decisive step was made by Foata and Zeilberger [20] in order to interpret the
general a of (1.10). Instead of multisets, they consider the permutations of a total
ordered 'coloured set', which permits them to introduce the notion of cycle.



4 JIANG ZENG

Based on this geometric set-up, Foata and Zeilberger [20] and Zeng [41]
successfully generalized both the Askey-Ismail and Carlitz methods to figure out
the interpretations of the I.e. of Laguerre, Meixner, Charlier and Krawchouk
polynomials, by using, in particular, the exponential formula and the ^-extension
of the MacMahon Master theorem.

Another different approach was initiated by Jackson [29]. He observed that the
result of Even and Gillis [17] can be naturally derived from interpretations of the
moments and from the rook polynomial interpretations of the simple Laguerre
polynomials [38]. This approach has the advantage of relating the three different
notions naturally: the (rook) polynomials, the moments, and the linearization
coefficients. Similarly, Godsil [26] has given an interpretation of the I.e. of
Hermite polynomials, but instead of rook polynomials he used matching
polynomials. This method was later developed further by De Sainte-Catherine
and Viennot [14] to provide an interpretation of the I.e. of Tchebycheff
polynomials of the second kind; they also found the explicit killing involution
under the principle of inclusion-exclusion involved in the above three proofs.
More recently, Gessel [22] produced a common generalization of rook and
matching polynomials to give new proofs of the known interpretations of the I.e.
of the Hermite, general Laguerre, and Charlier polynomials.

Our interpretation of the I.e. of the Meixner-Pollaczek polynomials is again
based on the model of derangements. Indeed, we will show that the integral
(1.12) counts the derangements according to three statistics: excedances, de-
cedance and cycles (cf. Theorem 4). This weight was originally inspired by
Viennot's combinatorial interpretations of the moments of the Sheffer polyno-
mials [40]. Moreover, we will propose two new approaches to the interpretation
of the linearisation coefficients of Sheffer polynomials based on a segment
decomposition of derangements.

For other combinatorial and group-theoretical aspects of the orthogonal
polynomials discussed in this paper, we refer the reader to [9, 19, 31, 32, 39, 40].

This paper is organized as follows. In § 2, we first evaluate the generating
functions of the moments of Sheffer polynomials and then give their com-
binatorial interpretations (cf. Theorem 1), which imply Viennot's combinatorial
results about the moments of Sheffer polynomials. In § 3, we use the generating
functions of the moments to evaluate the generating functions of the I.e., in
particular, that of the I.e. of Meixner-Pollaczek polynomials (cf. Theorem 2). In
§ 4, we introduce the notion of c-derangements and study their properties. In § 5,
we evaluate the generating functions of the c-derangements according to various
weights (cf. Theorem 3). In §6, we deduce the combinatorial interpretations of
the I.e. of Sheffer polynomials from their generating functions (cf. Theorem 4)
and show that in the case where 6 = 0 it has another interesting interpretation in
the context of general up-down permutations (cf. Theorem 5).

2. The moments and combinatorial preliminaries

It seems convenient to consider the integral in (1.1) as a formal linear
functional on the vector space of polynomials. Thus the functionals corresponding
to the Hermite, Charlier, Laguerre, Meixner, and Meixner-Pollaczek polyno-
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mials can be defined by their values on the base {xn}n^0 as follows:

(2.1) v(i>

(2.2) Kxn) = e-afJx
n-;

x=O XI

( 2 - 3 )

(2.4)
x=O x\ '

where w(x) = [ r ( ^ ) ] ~ 2 |r(^(ry + ix))|2exp(* arctan d). One notices that the
above quantities are actually the moments of the corresponding polynomials.

LEMMA 1. We have

(2.6) f xne-^-2<p)x \T{a + ix)\2 dx = 2""^r(2a) 4rn (
2 s i n <^)"2a-

J_oo d<p

Proof. According to Pollaczek [35], we have

\T(a + ix)\2 dx = JzT(2a)(2 sin 0)"20.

Differentiating the above formula n times and then dividing both sides by 2", we
immediately obtain (2.6).

PROPOSITION 1.

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

The following generating functions hold:

B2v(*")£«exp(il*);

Y " / " '

Y n\ *" \-«~\

y ( » \ r (1~CY
^o n\ \\-ce') '

2<p(x")- = (cost-6sint)-.

Proof. Formulae (2.8) and (2.10) can be derived directly by inserting the series
expressions and exchanging the order of the summations. Next, we notice that
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1 f+c°
= - 7 - (y/2x)2ae-x2dx = 1 .3 (2n - 1),

V^r J_oo

Formulae (2.7) and (2.9) then follow immediately. Finally, we will give two
proofs of (2.11). The first one uses only the special case n = 0 of Lemma 1. By
definition (2.5), we have

S+.Zw(x)dx

-Z \T(i(y + ix))\

iy)\2
 e^

2t+2arctan8) dy
S-Z\T(iri+iy)\2e2yarctan8dy

^ f + arctan <5)~rn

sin(^jir + arctan <5) J

= (cost — 6 sint)~v.

The second one uses Lemma 1 and Lagrange's inversion formula. Comparing
definition (2.5) and Lemma 1, we see that (p(xn) is the evaluation of the function

(sin 0)r '"7~^ (sin 0)~r ?

at 0 = \x + arctan <5. Thanks to Lagrange's inversion formula, or just Taylor's
formula [36], we have

2J (sin 0)r?"}—^ (sin 0)~T ?— = (sin 0)r ' [sin(0 + f)]"'7
n=o dip n\

= (cos t + cot 0 sin t)~r).

Substituting 0 = \n + arctan d into the last line, we obtain (2.11).

In order to give the combinatorial interpretations of these moments, we first
need to introduce some basic definitions and notation. Let N be the set of
non-negative integers and let [n] = {1, ..., n} for n e M; by convention [0] = 0 .
Let Sfn be the set of permutations of [n]. For o e $fn, we say that o has an

excedance at i e[n] if o(i) > i,
decedance at i e[n] if o(i) < i,
maximum at / e [n] if a - 1 ( / ) < / > o(i),

and denote by exc o, dec o, and max o respectively the numbers of excedances,
decedance and maxima of o. A cycle of a is a sequence (a, o(a), ..., ok~l(a))
such that <7*(fl) = a and o*(a)±aioi\<l<k. The length of this cycle is k. When
k = \, we say that a is a fixed point of o. Clearly, each permutation o can be
factorized as a product of disjoint cycles. We denote by eye o the number of
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cycles of o. A permutation o is said to be circular if eye o= 1. Furthermore, we
call o a derangement of [n] if a(i) =£ / for all / e [n] or, equivalently, all the cycles
of o have lengths at least 2, and we denote by 2n the set of derangements of [n].
Finally, we call o an involution if o2 = id and denote by JPn the set of fixed point
free involutions on [n].

For a finite set S, we denote by |5| the cardinal of 5. A partition of 5 is an
assemblage of the disjoint subsets (or blocs) JZ = {EU E2,..., £/} such that

.E-i +... + Ei = S. Let blocJT be the number of blocs of it and 9>n the set of
partitions of [«].

Throughout this paper, we adopt the following vector notation. For n =
(«!, ...,nm), we define

n\ = n1\...nm\, xn = x"1... x"m.

If /(x):=/(*!, ...,xw) is a power series in xt, ...,*m, we denote by [x!]/(x) the
coefficient of x1 in /(x). However, for convenience, the coefficient of the
monomial xxx2 ... xm in/(x) will be denoted by [x]/(x).

LEMMA 2. The number of circular permutations on [n] with k maxima is

f x"~\
\zk— loglcoshx^ — y~l sinhx_y} l,

where y = (l- z ) m .

Proof A proof of Lemma 2 can be found in [27, p. 273]. Note that this result is
usually attributed to Entringer [16]. In fact, this formula had been given implicitly
by Andre" [1] in 1895. See also Dumont [15] for some related results.

LEMMA 3. The number of permutations on [n] with k maxima and I cycles is

y*V—- (coshxy —y~l sinhxy) ri,

where y = V(l - "/)•

Proof. This is obvious on combining the exponential formula [18,30] and
Lemma 2.

THEOREM 1. We have

(2.12) v(x") = |4, | ,

(2.13) p{xH)= 2 flblocjr,

(2.14) V(*")= 2 (or + l)cyco=(or + l)n,
oeSfn

(2.15) p(xn) = (1 - c)~n 2 cdec °j8cyc °,

(2.16) <p(xn)-= d" 2 (1 + l/<52)maxVyco.
aeSfn
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Proof. Formula (2.12) is trivial, since the number of involutions without fixed
point on [In +1] and [2n] is respectively 0 and 1.3 (2n - 1). On the other
hand, it is well known [13] that the number of permutations of [n] with k cycles is
s(n, k), the Stirling number of the first kind, and the number of partitions of [n]
with k blocs is S(n, k), the Stirling number of the second kind. Moreover, we
have (cf. [13] or [36, p. 44])

k=ok=o

- -(1-*)-».
*=o*=o n\

The formulae (2.13) and (2.14) follow then by comparing (2.8) and (2.9) with the
above identities. Next, thanks to Foata's fundamental transformation [18], we
know that ECTeyn c

deca is equal to the nth Eulerian polynomial [38], of which the
exponential generating function is

1 -c

This and the exponential formula [18,30] imply that

deccrgcyccA H= ( 1~c V

Comparing the above identity with (2.10) yields (2.15). Finally, it follows from
Lemma 3 that

2 <5"2 (l + l/<52)max<Vyca — =(cosh(iO-Tsinh(/o)
nStO aeSn f l ! \ I I

= (cos t — 6 sin f)~ n.

We obtain (2.16) by comparing the above identity with (2.11).

REMARK. Theorem 1 actually gives Viennot's combinatorial definitions of the
moments of Sheffer polynomials [40]. Note that Viennot's original interpretation
of p(xn) (respectively cp(x")) uses the number of descents (respectively pics) and
saillants; however, by applying Foata's fundamental transformation [18], it is
easily seen that these statistics have the same distribution as (dec, eye) (respe-
ctively (max, eye)).

The following results are useful in the new derivations of the interpetation of
the I.e. of Sheffer polynomials. Let

(2.17) fm(Y>v)= 2 ydecVyca>
oe2>

(2.18) gm(Y,V)= 2 ym a xVy c°-
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PROPOSITION 2. We have

(2.19) 1+ 2/m(y , *])—)

(2.20) l+2^(r>^)^7

Proof. We just prove (2.20) here since (2.19) can be proved in the same
manner; see also [42]. For neQ)n> the weight function w(jz) = ymaxjlrjcycn is
multiplicative with respect to the cycle decomposition and each K does not
contain any fixed point (or cycle of length 1); hence we have, by the exponential
formula (cf. [18]) and Lemma 2 with y = V(l — y),

xm

1+ 2 8m(y> V)—=exp{ri\og(coshxy-y~lsinhxy)~l - rjx)

•f
-v

The proof is completed by substituting y2 = 1 — y in the last line.

COROLLARY 1. We have

2 (<5 + OdecCT(<5-OexcVyca=<5'1 2 (l + l/<52)maxVyca.
ae3)n oe3>n

Proof. This follows from Proposition 2 by noting that dec o + exc o = n for

3. 7Vie generating function of the linearization coefficients

In what follows we shall denote by ek the kth (O^k^m) elementary
symmetric polynomial of xlt..., xm, that is,

By convention, we set ek = 0 if k > m.

LEMMA 4. We have

(3.2) tan(arctan^ + ... ^ ) ^ ^
l-tn^o \ L) e2n

Proof This is routine, by induction on m.

LEMMA 5. With i = V—1, the following identities hold:

(3.3) 2 (-ir« J + 2 (-ir^+1 = n (i+4
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1 f

2 (-ir^=z n a+«*)+n a-
1 ( m

(3.5) 2 (-l)"^+i=r: Ul

Proof. Substituting x by / and —i in (3.1), we get
m

(3.6) 2 (-ir^+/2 (-ir^+i= n (i+«*>,

(3.7) 2 (-l)"e2»-«2 (-l)"«2»+i= II (!-«*)•

Formulae (3.4) and (3.5) are then straightforward. We obtain (3.3) by multiplying
(3.6) and (3.7).

LEMMA 6. For the linear functional cp of (2.5), the following identity holds:

exp*2 arctan^ = [I (1+4H 2 (-l)"**,-^ (-l)"^+i •
k=\ ' k=l ^n»0 n&O >

Proof By virtue of (2.11) of Proposition 1, we have

(p(expx2j arctan** I = 2J <P(X ) j
V k=l ' n&O n-

(arctan xl + ... + arctan xm)n

) j

{ I m \ I m

cosl 2 arctan xk) - <5 sinl 2 arctan **
_ f 1 - 6 tan(arctanxx + ...+ arctanxm) ]~n

~ IV(1 + tan2(arctan*i + ... + arctanxm))\
tan2(arctan*i + ... + arctanxm))

Substituting (3.2) into the last line, we get

( exp A: X arctan ^ J =

and then (3.8), in view of (3.3).

We are now in a position to compute the generating function of the
linearization coefficients of all the Sheffer polynomials and express them in terms
of the elementary symmetric functions of xA,...,xm with the help of the
generating functions of the moments and the polynomials.

THEOREM 2. We have

(3.9) 2 #0017 = ^
n3=0 n!

(3.10)
nS=0

(3.11) 2 #(" ; *)-, = (1 -e2-2e3- ... - (m - l )O~ ( a + 1 \
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(3.12) 2 ^ ( n ; ^ c ) - 7 (
n3=0 "I \ k=2

Proo/. Equations (3.9)—(3.12) are already known [6,41] and also easily
established using the generating functions of the polynomials themselves. So we
give here only the proof of (3.13). According to (1.7) and (1.12), we have

= [I ((1 + 6xk)
2 + x2

k)-^cpUxVx2 arctan —*— .
k = l \ y = l i + OXj/

Now we apply Lemma 6 to the above identity and obtain

(3.14) 2 ^(n;<5,r7)-=ri(l + ^ r i E (-1)^2.-^2 ( - l ) ^ + i '
n&0 n- k = l U&O ns=O J

where ek (k 2= 0) are the elementary symmetric polynomials of the variables:

1 + 6xx' "' 1 + dxm

Next, it follows from (3.3) and (3.4) of Lemma 5 that

(3.16) 2, (-1) «2«+i-^ 11 1 c 11 1 c f-

Finally, putting (3.15) and (3.16) into (3.14) we get

xn fi — S m i + 6 m 1 ~r'
(3.17) ] > > ( n ; M ) - = - r - r i ( l + (« + '>*) + ^7-11(1 +(«"'>*)

f 1 4 . ft2 m - , - T J

= i+^Sa^-o*-1-(«+«)*->* *
I. Ll k = \ )

which implies (3.13) after simplification.
If m = 3, the explicit formulae can be obtained from Theorem 2 for the

linearization coefficients of the Sheffer polynomials.

COROLLARY. Let n = (nx, n2, n3). We have the following explicit formulae:

(3.18) %(n)

(3.19) ^ ( n ; a ) =

0, if ny + n2 + n3 is odd;



12 JIANG ZENG

(3.20) ^ » . * ) - 2 1 ( 5 | | ) ! ( 5 | I ) ! ( j | |

REMARK. Formulae (3.18)-(3.21) have appeared in [3,5], but, to the author's
knowledge, formula (3.22) seems new. Setting n3 = 0 in the above corollary, we
then recover the orthogonalities of the Hermite, Charlier, Laguerre, Meixner,
and Meixner-Pollaczek polynomials.

4. The combinatorics of c-derangements

Let us begin with some multianalogues of the notions and notations introduced
in § 2. For each i e [m], we define the coloured sets H = ixN and [n], = i x [n].
Let a = (/, /) e N,; we call the first term i the colour of a and set c(a) = /. Let
N* = [m] x N denote the disjoint union N, U... U Nm. For n = (nlf ..., nm), we
note also [n] = [nl]l U... U [nm]m. Clearly, the set f̂ J* is a total ordered set with
respect to the lexicographic order.

It is convenient to identify a permutation n of a set A with the digraph on A
having an edge a-* n{a) for each a eA. We will refer to an edge beginning at a
point of colour i and ending at a point of colour; as an '/—>_/' edge, calling it pure
if / = / and mixed if i^j. A sequence of consecutive edges a-* jz(a)-* jr2(a)->
...^>jzk(a) (k^O) is called a path of the graph. We say also that this is a
c(a)-+ c(jz(a))-*c(jz2(a))-+... -+c(jzk(a)) path when we just take account of the
colours.

Let n be a permutation on [n]. An element a e [n] is said to be a c-fixed point
of Ji if c{a) = c{jz{a)). A permutation without c-fixed point is said to be a
c-derangement on [n]. We denote respectively by 2)n and J>n the sets of
c-derangements and of c-fixed point free involutions on [n]. Similarly, we say that
jt has a c-excedance (respectively c-decedance) at a £ [n] if c(iz(a)) > c(a)
(respectively c(n(a))<c(a)) and denote by excrc (respectively decn;) the
number of excedances (respectively decedances) of JZ.

PROPOSITION 3. Let /)(n;y,?j) = S y e x c Y y c ' t ( ^ e 3 n ) and let n* be any
rearrangement ofn = (nu...,nm). Then

(4.1) D(n;y, r/) = D(n*;y, rj).

Proof. Without loss of generality, we may assume that n* is a rearrangement
of n by just exchanging nt and n,+1, where 1 =s / =s m — 1. We will prove (4.1) by
constructing an explicit bijection <1>: 2)n—* S)n« such that exc JZ = exc <J>(TT) and
eye JZ = eye Q>(JZ) for all JZ € 3)n.

Consider any c-derangement n of [n] identified with its diagraph G. Recall that
any vertex of JZ is characterized by a pair of natural numbers (i,/), where j
(1 =s i =£ m) is the number of the colour to which it belongs and j (1 =£; «s n,) is its
serial number in that colour. Since there is no pure edge in C, each vertex of
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colour / or / + 1 is necessarily located in either a cycle of which the vertices are
only of colour i and / + 1 or one of the following paths:

(I) r,—•/—»/,, or r2->0 + l)->/2,

(II) r3->(i->(i + l))*'->/3, or r4-»((i + l)-M)**-/4 f

(III) r5->(/->(i + l))*'->i->/5, or r6^((i + l)-+i)k<^(i + l)-+l6>

where the rjt l} $ {i, i + 1} for 1 =s/ =£6 denote the colours of the corresponding
vertices and kt ~s* 1 for 1 «£ / =s 4. Now apply the following transformation $ toG:

(1) exchange the serial numbers of each vertex of colour i (respectively i + 1)
with those of its image in each path of Type (II) and in each cycle
consisting only of vertices of colour / and i + 1;

(2) exchange the colours i and / + 1 of the vertices in the paths of Types (I) and
(III).

Call the new graph G'. It is then readily seen that G' is a graph of a
c-derangement on [n*]. Denote the corresponding c-derangement by <b(n).
Clearly, the transformation <I> is a bijection between 2n and 2)n. with the
property that eye K = eye <I>(jr). On the other hand, each excedance of colour
i + l (respectively /) of n in a path of Type (II) or a cycle consisting only of
colour * and / + 1 is mapped to an excedance of <P(JZ) with the same colour, and
the number of excedances contained in each path of Type (I) or (II) is invariant
with respect to this transformation. Therefore the total number of excedances
does not change after this transformation, that is, exc n = exc O(^r).

COROLLARY 3. Let E(n ;y,rj) = T, ydec^r/cycjr (JT e Q)n) and n* be any rearran-
gement ofn = (nu ..., nm). Then £>(n ; y, rj) = D(n* ; y, rj).

Proof. This follows from the fact that dec n = «, + . . . + nm — exc JZ for each

Consider the graph of any c-derangement n of 2)n. Take any cycle of x and call
A'0 the highest ranking vertex of this cycle. Let X' = JZ(X°) for i 3s 1. Then this
cycle can be linearly presented as

(4.2) X0-*Xx^> ...^>Xp-\-*Xp = X°).

Since n is a c-derangement, it follows that /?s=2 and c(X')¥^c(X'+l) for
0 ^ / < p - l .

A linear arrangement w — a1a2".anof the elements of a subset i4cN» is said
to be a wave arrangement of A if no two adjacent elements of w have the same
colour, that is, c(ai)¥

:c(ai+1) for l^i^n — 1. A wave arrangement w =
axa2...an is called a wave segment if moreover n ^ 2 and c(a1)>c(ai) for all
2ss/ssn. In what follows, we will identify w = axa2... an with the sequence
ax-*a2—*• ••—»«« and call it a c(al)—^c(a2)-*...-*c{an) arrangement or seg-
ment. It follows that the cycle (4.2) can be divided up into wave segments each of
which begins with vertices of the same colour as X°. For example, if the cycle
(4.2) is

(7,6)-* (2, 5)-> (3, 7)-* (7, l)-> (2, 4)-> (1, l)-> (4, 3)-* (7, 2 ) ^ (2,1),
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we have the segments

^ = (7 ,6 )^ (2 ,5 )^ (3 ,7 ) ,

Thus, each cycle of JZ corresponds in this way to a set of wave segments and a
circular permutation acting on it. Let C, be the set of cycles of JZ of which the
highest ranking vertices are of colour / (2 =s / ^ m). By the above decomposition
of cycles, each class C, (2 ̂  / ^ m) corresponds to a pair (Q,, a,) where Q, is a set
of wave segments beginning with a vertex of colour /, and a, is a permutation
acting on it. Taking these into account we can identify any c-derangement JZ with
an (m - l)-tuple ((Q2, o2),..., (Qm, om)), with the product (juxtaposition) of all
the wave segments in Q2 U ... U Qm being a rearrangement of [n] and the
permutations a, (2 =s / =s m) acting on Q,.

To determine the transfer of the weight through this correspondence, we are
led to introduce the corresponding weight on the set of wave segments. Let
w = axa2... an be a wave segment. By abuse of language, we call a, (l^i^n)
c-decedance if c(«,_1)<c(fl,)>c(fl,+1) with the convention that ao = an and
an+\ = a\- Denote by decw the number of c-decedances of w and for a set of
wave arrangements Q, define dec Q = Ewen dec w.

PROPOSITION 4. The correspondence described above, that is,

JZ>-+((Q2, o2), ..., (Qm, om)),

has the following properties:

m m

dec JZ = X dec Q, and eye JZ - ^ eye or
i=2 i=2

Proof. Firstly, it is readily seen that eye n = E/I2 eye to,. It then suffices to
consider the case where JZ is a circular c-derangement. Let n e 2)n be a circular
derangement with the unique circle x°—>x1-*...-^>xp—>x°, where x° is the
highest ranking vertex and x' = n'(x°) for 1 =s l^p. Let Q = {iv,, vv2, ..., wk} be
the wave segment decomposition of JZ with

where a, = xl for 0 ̂  / ^ p and c(x°) = c(x'1) = ...= c(x'k). Then the
associated circular permutation o acting on Q is Wx-* vv2—>... —*• wk-*wx. Clearly,
an element xl is a c-decedance of JZ if and only if at is a c-decedance of some w,.
Hence dec JZ = E*=i dec w,.
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5. The generating functions of c-derangements

THEOREM 3. The following identities hold:

(5.i) 2 l ^ - l 3 = ^ ;

(5.2) 2
ns

(5.3) | o ( j ; F* ') jj = (1 - 22 (* - !)«*) ;

(5.4) 2 ( 2 cd e"/3c y c*);:=(l-2(c + -+c*"1)e*
n&0 ^G® n / II. \ ic-2

(5.5) 2 ( 2 (o-*r
n&0

Proof. Equations (5.1)-(5.4) are already known [20,28,40]. In fact, formulae
(5.1) and (5.2) are straightforward consequences of the multivariable exponential
formula [30], and formulae (5.3) and (5.4) were proved in [20, 41] by applying the
j8-extension of MacMahon's Master Theorem. Besides, if c = 1, formula (5.4)
reduces to (5.3). So in the sequel only the proof of (5.5) will be given. First we
note that for each JZ e3)n, we have

exc^r + dec;r = nx + ... + nm.

Hence, in (5.4) if we substitute c by (6 + i)/(6 - i), /? by rj, and xk by (6 - /)*,
we get immediately

( "(<5+o d e c

ns=0 \

= i - ^ S [(s + i)"-'-(d-i)"-']ek\ ,
I- ll k=2 J

which yields (5.5) after simplification.
In view of the importance of (5.4), we give here two more proofs of this

formula.

L E M M A 7 . Let <P(xx, x 2 , •••) be a p o w e r series in x x , x 2 , ••• • Then

For a proof of this result, we refer the reader to [27, p. 233].

First new proof of (5.4). We will count the c-derangements through the wave
segment decomposition given in Proposition 4. For l^i^m — 1, let n, =
(«! , . . . ,« , ) and Wj be the set of wave arrangements of [n,] U.. . U [«,-]. Let



16 JIANG ZENG

JZ = ax... an be a wave arrangement of V̂  and a e N* be an element with colour
c(a) = / + 1. It is then clear that OCJZ = aax ... an is a wave segment beginning with
colour i + 1. Define the generating function for Wt by

(5.6) /(*,,...,*,;y) = 2 ( 2 y M ^ - . ^ .

It follows that the generating function of the wave segments beginning with
colour i + 1 is Yxi+\fi(x\> •••> xi: > Y)- Recall that each c-derangement n corresponds
bijectively to a (m — l)-tuple ((Q2, o2), •••, (Qm, om)). Since the generating
function of permutations with each cycle being weighted by r\ is {\—x)~n, the
generating function of (Q,+1, oi+l) should be (1 - yx,+,/(*,,..., xt; y))"1* where
1 =ss / «s m — 1. Thanks to Proposition 4, we obtain

- .n m —1

(5.7) 2D(n;Y,v)-.= Yl ( 1 " Yxi^{xu ...,xf-; y))"".
ns=O n ! i = l

On the other hand, in view of Corollary 3, both sides of (5.7) are symmetric
functions of JC^ ..., xm, which implies that the function

m-\

(5.8) [I (i-yW/(*i»-.*,;y))
1=1

is also symmetric. Furthermore, we note that (5.8) is actually linear in xm. By
symmetry, it is a linear symmetric function of xu ..., xm. So we can expand (5.8)
as a linear combination of the elementary symmetric functions e, ( 0 ^ / ^ m )
(cf. [33]):

m-\

(5.9) Ft (1 ~ yxi+ifi(xlt..., Xi; y)) = a0 + fl,e, +.. . + amem,
( = 1

where the coefficients at (O^i^m) are to be determined. Using (5.9) we can
rewrite (5.7) as

xn

(5.10) 2 D(n ; y, r ? ) - = («0 + a,e, + ... + amemy\
ns=o n!

Applying Lemma 7 to (5.10) and noticing that the coefficient of *, ... xm in the
left-hand side of (5.10) is the generating polynomial dm(Y, rj) of the ordinary
derangements of 2)m (cf. Proposition 2), we obtain the following equation:

Equating the coefficients of xn gives aQ = 1, fli = 0 and, for k 2* 2,

Finally, substituting the above values into (5.10) yields (5.4).

Second new proof of (5.4). Let /j(y) =.//(*,, ..., x, ; y); it is then well known
[27, p. 78] that
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where 1 ^ / ^ m - l . It follows that

Substituting this in (5.7) we get

= (1 - ye2 - (y + y2)e3 - ... - (y +. . . + / " - > « ) " ' »

as desired.

6. Combinatorial interpretations of the linearization coefficients

Combining Theorems 2 and 3, we immediately derive the following com-
binatorial interpretations of the linearization coefficients of the orthogonal Sheffer
polynomials.

THEOREM

(6.1)

(6.2)

(6.3)

(6.4)

4. The following identities hold:

WV \MM } ~~ 1 K*n 1 %

JT

n

M(n ; fi, c) = 2J cexc3Ificyc" (TT

(6.5) ^(n; 6, ?/) = 2 (<5 + 0dec"(^ - iyxc7trjcycjl (JZ e Sn).

As mentioned in § 1, formulae (6.1)-(6.4) have been established by other
methods in [8, 14, 20, 41]. One notices that Theorem 4 shows that the
linearization coefficients of Hermite, Charlier, Laguerre and Meixner polynomials
are actually the polynomials of some appropriate variables with non-negative
integral coefficients. Therefore, the classical positivities (cf. [4]) of these
coefficients become obvious. However, although it is evident from (6.5) that
^(n ; 6, rj) is a polynomial of 6 and r\, the fact that the coefficients are
non-negative integers is not obvious.

PROPOSITION 5. The coefficients of the polynomial ^(n ; d, rj) of 6 and rj are
non-negative integers.

Proof. We first prove that it is a polynomial with integral coefficients. Clearly,
it is sufficient to prove that in the summation of (6.5) each term appears with its
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conjugate. For this end, we construct an involution T on 2)a as follows. For each
n e 3)n, we define T(jt) = x' by x'{a) = b if and only if jz(b) = a, where a, b are
elements of [n]. It is easy to see that T is an involution without fixed point on 2)n

such that

(6.6) cycjr = cycjr', dec JI: = exc ;r', exc;r =

Therefore, in the summation of (6.5), the summand corresponding to n' is the
conjugate of that corresponding to x'. It follows that ^(n ; 6, 77) is a polynomial
in 6 and rj with integral coefficients. It remains to prove that the coefficients are
positive. We shall prove this for m=s4, for the general cases are similar to the
case where m = 4. Set Pn : = Pn(x ; 6, rj). By (3.22) we have

P JM T n1\n2\

Therefore, the proposition is true for m ̂  3. For m = 4 we derive from the
linearization formula (1.0) that

P P P \- Y

By (6.7) and noting that cp(PkPk) = (k\)2(rj)k(d
2 + l)k, we may conclude that

(6.8) is a polynomial with positive coefficients.

When 6 = 0, the generating function (1.7) reduces to

(6.9) 2 Mn(x ;0,r,)-=(l + t2)-^exp(x arctant).

Note that the polynomials i"Mn{-ix ; 0, r]) were also introduced by Carlitz
[11]. We first derive some consequences from Theorem 4 for ^(n ;0, rj) before
we proceed to give another interesting interpretation in a different context.

PROPOSITION 6. If n = nx + ... + nm is odd, then ^(n ; 0,77) = 0.

Proof. Recall that the involution T defined in the proof of Proposition 5 has
the following properties: if T(x) — n', then

(6.10) eye jr = cyc;i;', exc;r = n — exc TZ'.

Whence, if n = nx + ... + nm is odd, in the sum of (6.5) the weight of n is killed by
that of JZ', that is,

( - U e x c y eyen _|_ / ^Nexcji'̂ n cyc;r' _ Q

Thus the total sum (6.5) is clearly zero.
Let <£„ be the set of permutations of 2>n of which all the cycles are of even

length. It follows that <£„ = 0 if n = nx + ... + nm is odd.

PROPOSITION 7. We have

(6.11) 0>(n;O, r])= 2 (-iyxc"inrjcycn.

Proof. Clearly, if we could define an involution 6: Q)n\%n—> 2)n\<£n such that
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6(JT) = JZ' with

(6.12) eye JI; = eye ;r' and exc JZ + exc JZ' odd,

the identity (6.10) would follow immediately. For each jze2)n\^n, we may
assume that the set of cycles of JZ is totaly ordered (for example, according to the
order of the highest ranking element of each cycle). Among the cycles of JZ, let
at—>a2—>...—>ar be the least cycle with odd length r. Then JZ' = 6{JZ) is defined
by the same cycles as JZ, except that the last cycle of odd length is ar-*ar_x—>
...—>«!. Clearly 0 is an involution on S n \ ? n and satisfies (6.12), for excjr +
excjr' = r = l (mod 2).

The new interpretation of 0>(n; 0, rj) relies on the model of generalized
up-down permutations. We consider a permutation of a subset A of N* as a linear
arrangement axa2... an of the elements of A. A permutation JZ = axa2 ... an is said
to be up-down if c(ax) < c{a2) ** c(a3) < . . . §1 c(an), and basic if it begins with its
smallest element. Also, we say that the length of the permutation JZ = axa2 ... an is
n. Let #*„ be the set of all permutations on [n] and %, the set of up-down
permutations on [n]. A record of a permutation JZ = axa2... an is an a, such that
i <j implies a, > a,. Denote by rec JZ the number of records of it and by F(JT) the
first element of n. A permutation ^ = fl1fl2---fl« is basic if it begins with its
smallest element. We let 53n be the set of basic permutations of 5^n.

As noted by Gessel [24], every permutation x = axa2... an has a unique
factorization n = I3X{}2 ... fik such that each /5, is basic and F(f}x) > F(j82) > ... >
F(f}k). Such a factorization is called a fetwic decomposition of JT and the /5, the
ftasic components of jr. We call a permutation reduced if it is a permutation of [n].
To any permutation JZ = axa2 ... an we may associate a reduced permutation,
red(jr), by replacing in JZ the /th smallest element of colour i by (i, j). Thus

red((l, 7)(2,9)(1,2)(2,6)) = (1,2)(2,2)(1,1)(2,1).

The content of the permutation ^ = axa2 ... aw is the set con(jr) = {ax, a2, ..., an).
We note that a permutation is determined by its reduction and its content.

A function co defined on permutations (with values in some commutative
algebra over the rationals) is multiplicative if for all permutations JZ:

(1) w(jz) = co(red(jz));
(2) if PiP2 ... ySjt is the basic decomposition of JZ, then

co(jz) = a>(Px)co(l32)...a>(l3k).

Thus a multiplicative function is determined by its values on reduced basic
permutations, and these may be chosen arbitrarily. One of the fundamental
properties of a multiplicative function is the so-called exponential formula.

LEMMA 8. Let co be a multiplicative function on permutations. Set gn =
T>neya w{iz) and /„ = Ejresin O){JZ). Then we have

x" x"

n3=o n ! n > 0 n !

We define the weight of a permutation JZ of [n] by W(JZ) = ryrec(jr) if n is up-
down and of even length and W(JZ) = 0 otherwise. Obviously 5n(r/) = Tine^ W(JZ)
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and Bn(rj) = E^g^ w{n) are, respectively, the generating functions of up-down
and basic up-down permutations of even length.

LEMMA 9. We have

Proof As the weight W(JI) is multiplicative, by Lemma 8, we have

£ M ? B(l)(6.14) 2 Sn0?)£ = exp2 BM^expr,?, Ba(l)
n2=0 I>! n > 0 II! n > o II!

But it is well known [27, p. 234] that

exP2 Bn(D^= 2 Sn(l)-"= ( 2 (-l)"^)"1.

Then, the proof is completed by putting the last identity in (6.14).

THEOREM 5. For any n — {nx,...,nm), the polynomials $P(n; 0, ri) are the
generating polynomials of up-down permutations of even length on [n] weighted by
records, viz.,

0 if n^ + ... + nm is odd.

Proof If 6 = 0, the right-hand side of (3.13) reduces to that of (6.13). The
theorem follows then from Lemma 9 and Theorem 2.

By comparison of Proposition 6 with Theorem 5, we derive the following

COROLLARY 4. We have

(6.15) 2 (-l)exc3li"ricycn= 2 Vrcc*-

REMARK. When n = (1 ,1 , . . . , 1) and t] = 1, identity (6.15) reduces to a
well-known result [43, Theorem 4.7].

In the case where rj = O, the polynomials pn(x):=pn(x ;0,Q) are no longer
orthogonal with respect to <p. However, there is another linear functional £ of
some interest, which may be defined by the generating function of the sequence

(6.16) 2 £(*'

It then follows from Lemma 5 that

I arctan xk I =

In other words, the following identity holds:
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However, it is well known that the right-hand side of (6.17) is the generating
function of the number of up-down permutations of odd length on [n] (cf.
[27, p. 196]). Consequently, £(II™=iPn(*)) is the number of up-down permuta-
tions of odd length on [n]. Hence, in particular, we have the quasi-orthogonality

n\ m\ if \n — m\ = 1,
.0 otherwise.

These results may be of some interest in the theory of coefficient extraction of
symmetric functions (cf. [23]).
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